
- •Механика, молекулярная физика и термодинамика Учебное пособие
- •Омск 2007
- •Введение
- •Разделы содержания теоретического курса, представленные в пособии
- •1. Физические основы механики
- •2. Молекулярная физика и термодинамика
- •I. Механика и элементы специальной теории относительности
- •1. Кинематика поступательного и вращательного движений материальной точки
- •1.1. Кинематические характеристики движения материальной точки
- •1.2. Тангенциальная и нормальная составляющие ускорения
- •1.3. Основная задача кинематики
- •1.4. Вращательное движение и его кинематические характеристики
- •2. Динамика поступательного и вращательного движений
- •Законы Ньютона Первый закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.
- •Третий закон Ньютона: силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению:
- •2.2. Динамика вращательного движения твердого тела
- •3. Работа и механическая энергия
- •3.1. Работа и мощность при поступательном и вращательном движениях
- •3.2. Консервативные и неконсервативные силы
- •3.3. Кинетическая энергия при поступательном и вращательном движениях
- •3.4. Потенциальная энергия
- •4. Законы сохранения в механике
- •4.1. Закон сохранения механической энергии
- •4.2. Закон сохранения импульса. Центральный удар двух тел
- •4.3. Закон сохранения момента импульса
- •5. Элементы специальной теории относительности
- •Пусть в начальный момент времени начала координат обеих систем и направления соответствующих осей совпадают.
- •5.2. Следствия из преобразований Лоренца
- •5.3. Релятивистские масса и импульс. Взаимосвязь массы и энергии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Контрольное задание №1
- •II. Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеальных газов
- •1.1. Уравнение состояния
- •1.2. Уравнение состояния Ван-дер-Ваальса
- •1.3. Внутренняя энергия
- •1.4. Статистические распределения
- •1.4.1. Распределение Максвелла
- •1.4.2. Распределение Больцмана
- •1.5. Среднее число столкновений и средняя длина свободного пробега молекул
- •1.6. Явления переноса в газах
- •2. Основы термодинамики
- •2.1. Первое начало термодинамики
- •2.2. Работа газа при изменении его объема
- •2.3. Теплоемкость
- •2.4. Применение первого начала термодинамики к изопроцессам
- •2.5. Адиабатический процесс
- •2.6. Обратимые и необратимые процессы. Коэффициент полезного действия теплового двигателя
- •2.7. Второе начало термодинамики
- •2.8. Цикл Карно и теорема Карно
- •2.9. Термодинамическое неравенство Клаузиуса. Энтропия
- •2.10. Фазовое пространство. Микро- и макросостояния системы
- •2.11. Статистический вес (термодинамическая вероятность) макросостояния и его связь с энтропией
- •Примеры решения задач
- •Для расчета средней квадратичной скорости выражение (1) удобно преобразовать, умножив числитель и знаменатель на na:
- •На основании первого начала термодинамики
- •Так как точки в и с принадлежат адиабате вс, то
- •Задачи для самостоятельного решения
- •Контрольное задание №2
- •Библиографический список
- •Содержание
- •Разделы содержания теоретического курса, представленные в пособии 4
3. Работа и механическая энергия
3.1. Работа и мощность при поступательном и вращательном движениях
Работа – это физическая величина, характеризующая процесс превращения одной формы движения в другую. В механике принято говорить, что работа совершается силой.
Элементарной
работой силы
называется величина, равная скалярному
произведению силы на элементарное
перемещение
:
,
где
–
элементарный путь точки приложения
силы за время dt,
– угол между векторами
и
.
Если на систему действуют несколько сил, то результирующая работа равна алгебраической сумме работ, совершаемых каждой силой в отдельности. Работа силы на конечном участке траектории или за конечный промежуток времени может быть вычислена следующим образом:
.
Если
=
const, то А=
.
При вращательном движении работа определяется проекцией момента сил на направление угловой скорости:
,
если М = const, то А = М.
Быстроту совершения работы характеризует мощность. Мощностью называется скалярная величина, равная работе, совершаемой в единицу времени:
– средняя
мощность;
– мгновенная мощность.
При вращательном движении мощность определяется следующим образом:
.
3.2. Консервативные и неконсервативные силы
Консервативными силами называются силы, работа которых не зависит от пути перехода тела или системы из начального положения в конечное. Характерное свойство таких сил – работа на замкнутой траектории равна нулю:
К консервативным силам относятся: сила тяжести, гравитационная сила, сила упругости и другие силы.
Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное. Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила тяги и другие силы.
3.3. Кинетическая энергия при поступательном и вращательном движениях
Кинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).
Кинетическая
энергия поступательного движения
.
Кинетическая
энергия вращательного движения
.
При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:
.
Свойства кинетической энергии.
1. Кинетическая энергия является конечной, однозначной, непрерывной функцией механического состояния системы.
2. Кинетическая энергия не отрицательна: ЕК 0.
3. Кинетическая энергия системы тел равна сумме кинетических энергий тел, составляющих систему.
4.
Приращение кинетической энергии тела
равно работе всех сил, действующих
на тело:
.
3.4. Потенциальная энергия
Потенциальная энергия системы – это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил. Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.
ЕП1
- ЕП2
= ЕП
= А12конс,
.
Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.
.
Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень.
Свойства потенциальной энергии.
1. Потенциальная энергия является конечной, однозначной, непрерывной
функцией механического состояния системы.
2. Численное значение потенциальной энергии зависит от выбора уровня с нулевой потенциальной энергией.
Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии:
,
причем
,
,
.
Примеры потенциальной энергии:
1)
–
потенциальная энергия тела массой m,
поднятого на высоту h относительно
нулевого уровня энергии в поле силы
тяжести;
– потенциальная энергия упругого деформированного тела, х – деформация тела.