
- •Математика, ч.2 Численные методы, теория функций комплексного переменного, дискретная математика
- •1. Информация о дисциплине
- •1.2. Содержание дисциплины и виды учебной работы3
- •1.2.1. Содержание дисциплины по гос4
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (объем дисциплины 150 часов)
- •(2 Часа)
- •(8 Часов)
- •Дифференциальных уравнений (8 часов)
- •(8 Часов)
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины
- •2.2.3. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очная форма обучения)
- •2.5.1.2. Практические занятия (очно-заочная форма обучения)
- •2.5.1.3. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очная форма обучения)
- •2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.3. Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •Базисные рейтинг - баллы равны 100, в том числе:
- •Информационные ресурсы дисциплины
- •Библиографический список
- •3.2. Опорный конспект лекций по дисциплине
- •Раздел 1. Численные методы
- •1.1. Обработка результатов измерений и погрешности вычислений
- •Вопросы для самопроверки по теме 1.1
- •1.2. Интерполяция и численное дифференцирование
- •Вопросы для самопроверки по теме 1.2
- •1.3. Численное интегрирование
- •Вопросы для самопроверки по теме 1.3
- •1.4. Приближение функций
- •Вопросы для самопроверки по теме 1.4
- •1.5. Многомерные задачи
- •1.6. Численные методы алгебры
- •Вопросы для самопроверки по теме 1.6
- •1.7. Решение систем нелинейных уравнений и задач оптимизации
- •1.8. Численные методы решения обыкновенных дифференциальных уравнений
- •Вопросы для самопроверки по теме 1.8
- •Раздел 2. Теория функций комплексного переменного
- •2.1. Комплексные числа и действия над ними
- •Вопросы для самопроверки по теме 2.1
- •2.2. Функции комплексного переменного (фкп). Условия Коши-Римана
- •Вопросы для самопроверки по теме 2.2
- •2.3. Элементарные функции и конформные отображения
- •2.4. Представление регулярных функций интегралами
- •2.5. Представление регулярных функций рядами
- •2.6. Вычеты функций и их применение
- •Раздел 3. Дискретная математика
- •3.1. Элементы теории графов
- •3.2. Формальные языки и дискретные автоматы
- •О твет: 101001 110100. Табл.(**)
- •3.3. Элементы алгебры логики
- •Вопросы для самопроверки по теме 3.3
- •3.3. Учебное пособие
- •3.4. Глоссарий (краткий словарь терминов)
- •Методические указания к выполнению лабораторных работ
- •Первая интерполяционная формула Ньютона для равноотстоящих узлов интерполяции
- •2.1. Отделение корней Графический метод отделения корней
- •Решение.
- •Аналитический метод отделения корней
- •Другие методы отделения корней
- •Метод касательных (Ньютона)
- •3. Порядок выполнения работы
- •Лабораторная работа 3 Уточнение корней уравнения средствами Excel. Решение системы уравнений в Excel.
- •1. Цель работы
- •2. Основные сведения
- •Решение.
- •Решение.
- •2.1. Метод прямоугольников
- •2.2. Метод трапеций
- •2.3. Метод парабол (Симпсона)
- •3. Порядок выполнения работы
- •3.6. Методические указания к проведению практических занятий
- •Задание 1
- •1. Цель работы
- •2. Основные теоретические положения
- •Задание 2
- •1. Цель работы
- •Основные теоретические положения
- •Задание 3
- •Цель работы
- •Основные теоретические положения
- •Типы формул интегрирования
- •Метод прямоугольников
- •Метод трапеций
- •2.6. Метод Симпсона
- •Задание 4
- •Цель работы
- •Основные теоретические положения
- •Задание 5
- •Цель работы
- •Основные теоретические положения
- •Порядок выполнения работы
- •Задание 6
- •Цель работы
- •Основные теоретические положения
- •Задание 7
- •Цель работы
- •Основные теоретические положения
- •Вычет в полюсе порядка m вычисляется по формуле
- •По теореме Коши о вычетах интеграл будет равен
- •Задание 8
- •Задание 9
- •Раздел 4. Блок контроля освоения дисциплины
- •Общие указания
- •Блок тестов текущего контроля.
- •3. Блок итогового контроля.
- •Задания на контрольные работы и методические указания к их выполнению
- •4.3. Текущий контроль Тренировочные тесты Тест №1 (по разделу 1)
- •1. Вычислите и определите погрешность результата , где . Воспользуйтесь расчетными формулами для абсолютной и относительной погрешностей приближённого числа: , , , , , , , .
- •Тест № 2 (по разделу 2)
- •Тест № 3 (по разделу 3)
- •Изобразить в виде графа структуру заданного языка и построить совокупность слов, порождаемых грамматикой данного языка: Алфавит . Правила грамматики: .
- •Правильные ответы на тренировочные тесты
- •4.4. Итоговый контроль
- •4.4.1. Вопросы для подготовки к экзамену
- •Содержание
- •1.1. Предисловие ……………………………………………………… 3
- •Раздел 1. Численные методы ………………………………… 18
- •Раздел 2. Теория функций комплексного
- •Раздел 3. Дискретная математика …………………………….. 59
- •Раздел 4. Блок контроля освоения дисциплины ………… 139
3. Порядок выполнения работы
1. Выполнить решение примера индивидуального задания (с.79) в Excel.
3.6. Методические указания к проведению практических занятий
Практические занятия проводятся по тематике контрольных работ, выполняемых студентами. Студенты, обучающиеся с применением ДОТ, задания на практические занятия получают на учебном сайте СЗТУ.
Задание 1
Интерполяция функций с равноотстоящими узлами.
1. Цель работы
Построение функциональной зависимости по экспериментальным данным.
2. Основные теоретические положения
2.1. Приближение функций одной переменной
Одной из наиболее важных проблем численного анализа является проблема приближенного описания неизвестной функциональной зависимости по известным ее значениям в некоторых точках, называемых узловыми.
Постановка задачи интерполяции
Задача интерполирования может быть сформулирована следующим образом.
Пусть на отрезке [a, b] заданы n + 1 точки х0, x1, … , xn, которые называются узлами интерполяции, и значения некоторой интерполируемой функции f (x) в этих точках, т. е.
y0 = f (x0); y1 = f (x1); … ; yn = f (xn).
Требуется построить интерполирующую зависимость F(x), которая в узлах интерполяции принимает те же значения, что и интерполируемая функция f (x), т.е.
F(x0) = f (x0) = y0 ,
. . . . . . . . . . . . .
F(xn) = f (xn) = yn.
Графически задача интерполирования заключается в том, чтобы построить такую интерполирующую функцию, которая бы проходила через все узлы интерполяции.
Чаще всего в
качестве интерполирующей функции F(x)
используются многочлены
.
Задача состоит в том, чтобы подобрать
многочлен
,
обеспечивающий
требуемую точность интерполяции e,
т.е. удовлетворяющий
условию
.
(1)
Наиболее успешно для интерполяции используется многочлен Ньютона, в записи которого в случае интерполяции функции с равноотстоящими узлами используются конечные разности.
2.3. Конечные разности
Пусть для значений
,
где h
–
шаг интерполяции, известны значения
функции
Определение: Конечной разностью первого порядка называется разность
(2)
Аналогично определяются конечные разности второго и более высокого порядка
(3)
Конечные разности при вычислении удобно записать в табл.1.
Таблица 1
-
i
xi
yi
yi
2yi
3yi
4 yi
0
x0
y0
y0
2y0
3y0
4y0
1
x1
y1
y1
2y1
3y1
2
x2
y2
y2
2y2
3
x3
y3
y3
4
x4
y4
Отметим, что число (порядок) конечных разностей всегда на единицу меньше числа узлов.
2.4. Интерполяционный полином Ньютона
Интерполяционный многочлен Ньютона для равноотстоящих узлов записывается в виде
(4)
или
.
(5)
Можно показать, что оценка погрешности Rn(x) при замене f(x) полиномом Pn(x) имеет вид:
Rn(x)=
.
(6)
2.5. Решение задачи
Пример 1.
Закон движения некоторого объекта y = f(x) представлен в табл. 2 (x – время, y –путь).
Таблица 2
-
x
0
1
2
3
4
5
6
y
0
2
10
30
46
130
222
Требуется найти пройденный объектом путь к моменту x = 3,5.
□Для вычисления y = f(3,5) необходимо на основе табл.1 получить математическое описание функциональной зависимости y = f(x).
Если использовать критерий точного совпадения в узлах, то число определяемых параметров аппроксимирующей функции равно числу точек. При выборе такого критерия задача сводится к построению интерполяционных многочленов.
Заполним таблицу конечных разностей для экспериментальных данных, приведенных в табл.2. Вычисления удобно проводить с использованием табличного процессора Excel (табл.3).
Таблица 3.
Видим, что здесь шаг интерполяции h = 1. Степень полинома определяется числом (порядком) конечных разностей, т.е., по формуле (4) или (5) имеем:
.
Подставим наши данные и получим, что
Тогда путь
,
пройденный к моменту
,
составит величину
.■