
- •Математика, ч.2 Численные методы, теория функций комплексного переменного, дискретная математика
- •1. Информация о дисциплине
- •1.2. Содержание дисциплины и виды учебной работы3
- •1.2.1. Содержание дисциплины по гос4
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (объем дисциплины 150 часов)
- •(2 Часа)
- •(8 Часов)
- •Дифференциальных уравнений (8 часов)
- •(8 Часов)
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины
- •2.2.3. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очная форма обучения)
- •2.5.1.2. Практические занятия (очно-заочная форма обучения)
- •2.5.1.3. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очная форма обучения)
- •2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.3. Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •Базисные рейтинг - баллы равны 100, в том числе:
- •Информационные ресурсы дисциплины
- •Библиографический список
- •3.2. Опорный конспект лекций по дисциплине
- •Раздел 1. Численные методы
- •1.1. Обработка результатов измерений и погрешности вычислений
- •Вопросы для самопроверки по теме 1.1
- •1.2. Интерполяция и численное дифференцирование
- •Вопросы для самопроверки по теме 1.2
- •1.3. Численное интегрирование
- •Вопросы для самопроверки по теме 1.3
- •1.4. Приближение функций
- •Вопросы для самопроверки по теме 1.4
- •1.5. Многомерные задачи
- •1.6. Численные методы алгебры
- •Вопросы для самопроверки по теме 1.6
- •1.7. Решение систем нелинейных уравнений и задач оптимизации
- •1.8. Численные методы решения обыкновенных дифференциальных уравнений
- •Вопросы для самопроверки по теме 1.8
- •Раздел 2. Теория функций комплексного переменного
- •2.1. Комплексные числа и действия над ними
- •Вопросы для самопроверки по теме 2.1
- •2.2. Функции комплексного переменного (фкп). Условия Коши-Римана
- •Вопросы для самопроверки по теме 2.2
- •2.3. Элементарные функции и конформные отображения
- •2.4. Представление регулярных функций интегралами
- •2.5. Представление регулярных функций рядами
- •2.6. Вычеты функций и их применение
- •Раздел 3. Дискретная математика
- •3.1. Элементы теории графов
- •3.2. Формальные языки и дискретные автоматы
- •О твет: 101001 110100. Табл.(**)
- •3.3. Элементы алгебры логики
- •Вопросы для самопроверки по теме 3.3
- •3.3. Учебное пособие
- •3.4. Глоссарий (краткий словарь терминов)
- •Методические указания к выполнению лабораторных работ
- •Первая интерполяционная формула Ньютона для равноотстоящих узлов интерполяции
- •2.1. Отделение корней Графический метод отделения корней
- •Решение.
- •Аналитический метод отделения корней
- •Другие методы отделения корней
- •Метод касательных (Ньютона)
- •3. Порядок выполнения работы
- •Лабораторная работа 3 Уточнение корней уравнения средствами Excel. Решение системы уравнений в Excel.
- •1. Цель работы
- •2. Основные сведения
- •Решение.
- •Решение.
- •2.1. Метод прямоугольников
- •2.2. Метод трапеций
- •2.3. Метод парабол (Симпсона)
- •3. Порядок выполнения работы
- •3.6. Методические указания к проведению практических занятий
- •Задание 1
- •1. Цель работы
- •2. Основные теоретические положения
- •Задание 2
- •1. Цель работы
- •Основные теоретические положения
- •Задание 3
- •Цель работы
- •Основные теоретические положения
- •Типы формул интегрирования
- •Метод прямоугольников
- •Метод трапеций
- •2.6. Метод Симпсона
- •Задание 4
- •Цель работы
- •Основные теоретические положения
- •Задание 5
- •Цель работы
- •Основные теоретические положения
- •Порядок выполнения работы
- •Задание 6
- •Цель работы
- •Основные теоретические положения
- •Задание 7
- •Цель работы
- •Основные теоретические положения
- •Вычет в полюсе порядка m вычисляется по формуле
- •По теореме Коши о вычетах интеграл будет равен
- •Задание 8
- •Задание 9
- •Раздел 4. Блок контроля освоения дисциплины
- •Общие указания
- •Блок тестов текущего контроля.
- •3. Блок итогового контроля.
- •Задания на контрольные работы и методические указания к их выполнению
- •4.3. Текущий контроль Тренировочные тесты Тест №1 (по разделу 1)
- •1. Вычислите и определите погрешность результата , где . Воспользуйтесь расчетными формулами для абсолютной и относительной погрешностей приближённого числа: , , , , , , , .
- •Тест № 2 (по разделу 2)
- •Тест № 3 (по разделу 3)
- •Изобразить в виде графа структуру заданного языка и построить совокупность слов, порождаемых грамматикой данного языка: Алфавит . Правила грамматики: .
- •Правильные ответы на тренировочные тесты
- •4.4. Итоговый контроль
- •4.4.1. Вопросы для подготовки к экзамену
- •Содержание
- •1.1. Предисловие ……………………………………………………… 3
- •Раздел 1. Численные методы ………………………………… 18
- •Раздел 2. Теория функций комплексного
- •Раздел 3. Дискретная математика …………………………….. 59
- •Раздел 4. Блок контроля освоения дисциплины ………… 139
2.1. Отделение корней Графический метод отделения корней
При графическом методе можно построить график функции для уравнения вида f(x) = 0. Значения действительных корней уравнения являются абсциссами точек пересечения функции y = f(x) с осью х.
Пример.
Отделить корни уравнения x3
- 8x
+ 2 = 0
графическим методом, где x
[-3,
3].
Решение.
□Для отделения корней можно построить график функции y = x3 -8 x + 2 (рис. 1), задав шаг изменения аргумента, например, равным 1. График удобно строить средствами Excel, используя Мастер диаграмм. Значениями действительных корней уравнения являются точки пересечения графика функции с осью x. Из графика видно, что корни находятся на интервалах [-3; -2], [0; 1] и [2; 3]. Если задать шаг изменения аргумента меньше выбранного, можно сузить границы интервалов.■
Рис. 1
Аналитический метод отделения корней
Для отделения действительных корней непрерывных функций следует помнить следующее:
если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] одинаковые знаки (т.е. f(a)·f(b) > 0), то на этом интервале имеется четное число корней или их нет (рис. 2);
! нельзя забывать, что корнем функции может быть не только точка пересечения графика функции f(x) с осью x, но и его касание с осью x (рис. 3). В этом случае монотонность функции нарушается.
Рис. 2 Рис. 3
если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] разные знаки (т.е. f(a)·f(b) < 0), то на этом интервале имеется нечетное число корней (рис. 4, 5);
Рис. 4 Рис. 5
! Разные знаки функции на концах интервала указывают на наличие корня на интервале [a, b], но не гарантируют его единственности.
если функция f(x) непрерывна на интервале [a, b], монотонна и ее значения на концах интервала имеют разные знаки (f(a)·f(b) < 0), то уравнение на этом интервале имеет единственный корень.
Из этого следует, что для единственности корня на участке [a, b] достаточно, чтобы выполнялись условия: f(a)·f(b) < 0, а f'(x) была знакопостоянна для любого x, принадлежащего [a, b].
! иногда для единственности корня бывает достаточно и знакопостоянства второй производной.
Таким образом, чтобы отделить все корни уравнения, следует:
найти промежуток, где f(a)·f(b) < 0, а f'(x) или f''(x), или и f'(x), и f''(x), были знакопостоянны;
отыскать нули и точки разрыва f'(x) и проверить, не являются ли они корнями уравнения.
Пример (продолжение). □Отделить все действительные корни уравнения f(x) = 0 на отрезке [-3, 3]:
f(x) = x3 - 8x +2 = 0.
Решение.
Вычислим значения функции f(x) на концах отрезка [-3, 3]:
f(-3) = (-3)3 - 8·(-3) + 2 = -1, f(3) = (3)3 - 8·3 + 2 = 5.
f(-3)∙f(3) < 0, поэтому на отрезке [-3, 3] имеется или один корень, или нечетное число корней.
f'(x)
= 3x2
- 8 – непрерывна. Для определения
интервалов монотонности f(x)
найдем значения x,
при которых f'(x)
= 0. f'(x)
= 3x2
– 8 = 0 при x
=
≈
±1,633.
Таким образом, можно отделить следующие интервалы монотонности функции f(x): [-3; -1,633], [-1,633; 1,633], [1,633; 3] и на каждом из этих интервалов отделено по одному корню уравнения.
Для наглядности вычислим значения f(x) и f'(x) на концах этих промежутков (табл. 1). f'(x) = 3x2 – 8.
Таблица 1