
- •Порядок проектирования мт
- •2. Выбор оптимальной трассы трубопровода
- •3. Нагрузки и воздействия на мт
- •4. Расчет на прочность, деформации и устойчивость.
- •5. Испытание и приемка
- •6. Особенности сооружения на болотах и ммг
- •Строительство на ммг
- •7. Диагностика мт
- •Диагностика линейной части газопровода.
- •8. Сооружение подводных мт
- •3. Трубопровод искривлен по профилю перехода, течение отсутствует
- •9. Генпланы станций и хранилищ
- •Компановка генплана
- •11. Аварии и их ликвидация
- •Ликвидация аварий на мн
- •Ликвидация аварий на мг
- •12. Ремонт основного оборудования станций и хранилищ
- •Ремонт оборудования станций
- •13 Выбор наивыгоднейшего способа тран-та нефтегруза.
- •14.Основные объекты и оборудование нефтепроводов.
- •15. Технологический расчет н/пров.
- •1 6. Увеличение пропускной способности нефтепровода.
- •17. Режим работы неф-да при изменении вязкости нефти, остановке нпс или насосов, сбросах и подкачках нефти.
- •18. Эксплуатация мн с учетом отложения воды и парафинов.
- •19. Эксплуатация мн при недогрузке.
- •20. Способы повышения эффективности работы н/п
- •21. Особенности проектирования тр-пр при последоват-ой перекачки нефтей и нефтепродуктов.
- •22.Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепр-ов.
- •23. Мероприятия по уменьшению кол-ва смеси при последов. Перекачке:
- •24. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •25.Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •26. Тепловой и гидравлический расчет “горячих” нефт-ов.
- •27. Особые режимы работы горячих н/пров.
- •28. Состав объектов мг.
- •29. Технологический расчет газопроводов.
- •30. Температурный режим мг.
- •31. Гидравлический расчет сложных газопроводов.
- •32. Увеличение производительности мг.
- •33.Режим работы мг при отключении кс или гпа.
- •34. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов
- •35. Транспорт охлажденного газа.
- •36. Основное и вспомогательное оборудование нпс.
- •37. Технологические схемы нпс.
- •Технологическая схема пнпс.
- •38. Характеристики насосов нпс.
- •39. Совместная работа насосов и трубопроводной сети
- •40. Расчёт внутриплощадочных трубопроводов.
- •41. Насосные станции нефтебаз.
- •42. Основное и вспомогательное оборудование кс
- •43. Технологическая схема кс
- •44. Подбор основного и вспомогательного оборудования кс.
- •Подбор оборудования очистки газа
- •45. Расчет внутриплощадочных коммуникаций кс.
- •46. Техническое обслуживание оборудования кс и нс.
- •47. Диагностика гпа
- •48. Газораспределительные системы
- •49. Технологические схемы и оборудование грс и грп.
- •50.Хранение природного газа
- •51.Сжиженные углеводородные газы
- •52. Хранение суг
- •53. Технологические процессы и оборудование гнс
- •54. Товарные нефтепродукты и основы их использования.
- •55. Железнодорожные перевозки нефтепродуктов.
- •56. Водные перевозки н/пр.
- •58. Резервуары нефтебаз
- •59. Эксплуатация резервуаров.
- •60. Потери нефти и нефтепродуктов.
- •61 Подогрев нефтепродуктов
- •63. Технологические трубопроводы нефтебаз.
- •64. Системы сбора продукции нефтяных скважин
- •65. Системы сбора продукции газовых скважин.
- •66. Гидравлический расчёт промысловых нефтепроводов.
- •67. Сепарация нефти и сепарация природного газа.
- •68. Оборудование установок подготовки нефти.
- •69. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •70. Гидраты и борьба с ними.
- •71. Подготовка газа и конденсата к транспорту.
67. Сепарация нефти и сепарация природного газа.
Нефтяные сепараторы предназначены для получения нефтяного газа, выделившегося из нефти при ее движении по стволу скважины, трубопроводам-шлейфам и сборному коллектору.
В результате сепарации снижается перемешивание нефтегазового потока и снижаются гидравлические сопротивления за счет транспорта газонасыщенной нефти.
Классификация нефтяных сепараторов.
1. по назначению (замерносепарирующие и сепарирующие);
2. по геометрической форме и положению в пространстве (цилиндрические, сферические, горизонтальные, вертикальные, наклонные);
3. по числу ступеней сепарации (одно-, двух-, трехступенчатые);
4. по разделению фаз (двухфазные – нефть и газ, трехфазные – нефть, газ и вода);
5. по рабочему давлению (высокого – 6,4 МПа, среднего – 2,5 МПа, низкого – 0,6 МПа);
6. по характеру проявления основных сил (гравитационные, инерционные, центробежные).
В нефтяных сепараторах любого типа основные элементы расположены в четырех секциях:
1. сепарационной (для разделения нефти и газа за счет центробежных и гравитационных сил);
2. осадительной (дополнительное выделение пузырьков газа из тонкого слоя нефти протекающего по наклонной плоскости);
3. каплеотделительной (для улавливания капель жидкости уносимых потоком газа);
4. секция сбора нефти.
Принцип действия. При входе нефти в сепаратор происходит снижение ее давления, в результате начинается интенсивное отделение нефтяных газов. Для более полного разгазирования нефть плавно стекает по наклонным плоскостям в секцию сбора. При достижении определенного уровня срабатывает исполнительный механизм, и нефть поступает в трубопровод.
Выделившийся нефтяной газ уносит в потоке капли нефти. Для их отделения используется каплеуловительная секция в виде жалюзийных насадок.
Эффективность работы сепаратора оценивается по количеству отбираемой нефти и убывании уровня нефти в сепараторе за счет ее разгазирования.
При одноступенчатой сепарации происходит контактное разгазирование, т.е. резкое снижение давления, нефть как бы кипит, выделяется большое количество легких углеводородов, которые уносят с собой капли нефти.
Целесообразнее применят многоступенчатую сепарацию, т.е. дифференциальную (максимум 6 – 8 ступеней). При такой сепарации происходит плавное понижение давления, что влечет за собой также плавное выделение сначала легких, потом средних и тяжелых углеводородов. При этом практически все ступени работают в одинаковых условиях м выход нефти при многоступенчатой сепарации на 4% выше, чем при контактном разгазировании.
Нефтяные сепараторы рассчитывают на пропускную способность, учитывая гравитационные силы.
На работу сепаратора влияют:
1) физико-химические свойства нефти;
2) производительность сепаратора;
3) давление и температура в сепараторе;
4) обводненность нефти.
Газовые сепараторы являются аппаратами для основного технологического способа подготовки газа к транспорту и для отделения механических примесей и конденсата.
В зависимости от технологического процесса место установки сепаратора может быть следующее:
1. после регулируемых штуцеров на выходе из скважины – сепараторы первой ступени или грубой очистки;
2. на пунктах подготовки газа – сепараторы второй ступени или тонкой очистки.
Классификация газовых сепараторов.
1. по принципу действия (гравитационные, инерционные),
2. по форме корпуса и расположению в пространстве (цилиндрические – горизонтальные и вертикальные, сферические),
3. в зависимости от технологического процесса (на сепараторы глубокой и тонкой очистки);
4. по расположению сборника жидкости (встроенный, выносной).
Комплекс сепарационной техники сведен в параметрический ряд, базой которого является параметры работы установок подготовки газа.
Для выбора и оптимизации технологических процессов, схем и отдельных аппаратов возможны два подхода:
1. варианты схем выбираются по экономическим критериям;
2. выбор оборудования осуществляется по показателям эффективности его работы и минимума энергозатрат.
В настоящее время используют однокритериальную оптимизацию сложной технологической схемы и многокритериальный выбор отдельных аппаратов.
Конструктивно газовые сепараторы можно разделить на двухемкостные горизонтальные и вертикальные с насадками различных типов (жалюзийные, уголковые, желобчатые, лопастные). Насадки предназначены для отделения жидкости и механических примесей и расположены в верхней трети части сепаратора.
Различия газовых и нефтяных сепараторов.
Сепараторы газовых и газоконденсатных месторождений рассчитаны на производительность 100002000000 м3/сут. и на небольшое количество маловязкого конденсата Q=0,2800 см 3/м3. Для нефтяных месторождений сепараторы рассчитываются на производительность 10001500 м3/сут. с газовым фактором 1200 м3/м3, поэтому сепараторы предназначенные для природного газа рассчитаны только на прохождение газовой фазы, скорость которой должна быть достаточной для выделения капельной влаги и механических примесей, а сепараторы по нефти рассчитываются как по количеству капельной нефти, уносимой потоком газа, так и по количеству пузырьков газа, уносимых потоком нефти.
Основными силами, действующими в газовых сепараторах, являются центробежная, инерционная, сила тяжести, адгезия, в нефтяных – гравитация, которая за счет конструктивных особенностей аппарата может прибавлять силы инерции и пленочные процессы.
Сепарация природного газа происходит достаточно спокойно и плавно, а сепарация нести сопровождается пульсациями различной частоты и амплитуды, т.к. природный газ это маловязкая среда, а нефть – практически несжимаемая вязкая жидкость.
Работа газовых сепараторов характеризуется коэффициентом, определяющим отношение массы капельной жидкости, выносимой потоком газа из сепаратора к массе капельной жидкости, находящейся в газовой фазе до каплеуловительной секции аппарата. Коэффициент сепарации для аппаратов, работающих в номинальном режиме с = 0,75-0,98 в зависимости от конструктивных особенностей аппарата. В нефтяных сепараторах кроме коэффициента, характеризующего аналогичный процесс, обязательно учитывается коэффициент сепарации нефти от пузырьков газа.