
- •Порядок проектирования мт
- •2. Выбор оптимальной трассы трубопровода
- •3. Нагрузки и воздействия на мт
- •4. Расчет на прочность, деформации и устойчивость.
- •5. Испытание и приемка
- •6. Особенности сооружения на болотах и ммг
- •Строительство на ммг
- •7. Диагностика мт
- •Диагностика линейной части газопровода.
- •8. Сооружение подводных мт
- •3. Трубопровод искривлен по профилю перехода, течение отсутствует
- •9. Генпланы станций и хранилищ
- •Компановка генплана
- •11. Аварии и их ликвидация
- •Ликвидация аварий на мн
- •Ликвидация аварий на мг
- •12. Ремонт основного оборудования станций и хранилищ
- •Ремонт оборудования станций
- •13 Выбор наивыгоднейшего способа тран-та нефтегруза.
- •14.Основные объекты и оборудование нефтепроводов.
- •15. Технологический расчет н/пров.
- •1 6. Увеличение пропускной способности нефтепровода.
- •17. Режим работы неф-да при изменении вязкости нефти, остановке нпс или насосов, сбросах и подкачках нефти.
- •18. Эксплуатация мн с учетом отложения воды и парафинов.
- •19. Эксплуатация мн при недогрузке.
- •20. Способы повышения эффективности работы н/п
- •21. Особенности проектирования тр-пр при последоват-ой перекачки нефтей и нефтепродуктов.
- •22.Прием и реализация смеси нефтепродуктов при последовательной перекачке нефтей и нефтепр-ов.
- •23. Мероприятия по уменьшению кол-ва смеси при последов. Перекачке:
- •24. Режимы работы продуктопроводов при замещении нефтепродуктов.
- •25.Способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •26. Тепловой и гидравлический расчет “горячих” нефт-ов.
- •27. Особые режимы работы горячих н/пров.
- •28. Состав объектов мг.
- •29. Технологический расчет газопроводов.
- •30. Температурный режим мг.
- •31. Гидравлический расчет сложных газопроводов.
- •32. Увеличение производительности мг.
- •33.Режим работы мг при отключении кс или гпа.
- •34. Эксплуатация газопроводов с учетом скопления жидкости и образования гидратов
- •35. Транспорт охлажденного газа.
- •36. Основное и вспомогательное оборудование нпс.
- •37. Технологические схемы нпс.
- •Технологическая схема пнпс.
- •38. Характеристики насосов нпс.
- •39. Совместная работа насосов и трубопроводной сети
- •40. Расчёт внутриплощадочных трубопроводов.
- •41. Насосные станции нефтебаз.
- •42. Основное и вспомогательное оборудование кс
- •43. Технологическая схема кс
- •44. Подбор основного и вспомогательного оборудования кс.
- •Подбор оборудования очистки газа
- •45. Расчет внутриплощадочных коммуникаций кс.
- •46. Техническое обслуживание оборудования кс и нс.
- •47. Диагностика гпа
- •48. Газораспределительные системы
- •49. Технологические схемы и оборудование грс и грп.
- •50.Хранение природного газа
- •51.Сжиженные углеводородные газы
- •52. Хранение суг
- •53. Технологические процессы и оборудование гнс
- •54. Товарные нефтепродукты и основы их использования.
- •55. Железнодорожные перевозки нефтепродуктов.
- •56. Водные перевозки н/пр.
- •58. Резервуары нефтебаз
- •59. Эксплуатация резервуаров.
- •60. Потери нефти и нефтепродуктов.
- •61 Подогрев нефтепродуктов
- •63. Технологические трубопроводы нефтебаз.
- •64. Системы сбора продукции нефтяных скважин
- •65. Системы сбора продукции газовых скважин.
- •66. Гидравлический расчёт промысловых нефтепроводов.
- •67. Сепарация нефти и сепарация природного газа.
- •68. Оборудование установок подготовки нефти.
- •69. Особенности расчета нефтяных и газовых промысловых коллекторов.
- •70. Гидраты и борьба с ними.
- •71. Подготовка газа и конденсата к транспорту.
42. Основное и вспомогательное оборудование кс
КС на магистральных газопроводов предназначены для компримирования (сжатия газа) и придания ему, таким образом, упругой энергии, за счет которой газ движется по трубопроводу и преодолевает его сопротивление. Энергии, передаваемой КС газу, недостаточно для продвижения его до конца магистрали. Поэтому по пути движения газа энергия его периодически возобновляется на КС, расположенных по трассе г/пр через 100–200 км. Необходимое кол-во КС и его расстановка их трассе производится на основе гидравлического расчета магистрали.
В целом КС классифицируются по след признакам:
1) по расположению по трассе;
2) по типу компрессорных машин;
3) по типу привода компрессорных машин.
По расположению по трассе:
- головные КС (ГКС);
- промежуточные КС;
- дожимные КС (ДКС).
ГКС располагаются в голове магистрали и служат для приема газа с промыслов и подачи его в магистраль. На ГКС помимо компримирования газа может проводиться подготовка газа к транспорту на дальние расстояния. В частности его очистка, сепарация, осушка, очистка от сероводорода и CO2, а также одоризация.
Промежуточная КС осуществляет только компримирование газа, но на всех КС обязательно осуществляются такие операции, как очистка газа от механических примесей на входе КС и охлаждение газа после его компримирования. Очистка газа производится с помощью пылеуловителей (при одноступенчатой очистке) и с помощью пылеуловителей и фильтров-сепараторов (при 2-х ступенчатой очистке).
По типу используемых компрессорных машин: станции с поршневыми компрессорами; станции с центробежными нагнетателями (ЦБН), которые в свою очередь делятся на: КС с полнонапорными нагнетателями и КС с неполнонапорными нагнетателями.
По типу привода компрессорных машин КС бывают: станции с поршневыми газовыми двигателями; с приводом от ГТУ; с приводом от электродвигателей.
По количеству ступеней сжатия КС бывают с одно-, 2-х и 3-хступенчатым сжатием.
Обычно поршневые компрессоры приводятся поршневыми газовыми двигателями, которые с компрессорами образуют единый агрегат – газомотокомпрессор (ГМК). Газомотокомпрессоры ГМК используются на магистральных газопроводах с производительностью до 10 (15) млн м3/сут и широкого применения не находят. ГМК имеет степень сжатия более 2.
К основному оборудованию КС относятся:
Газоперекачивающие агрегаты и газомотокомпрессоры.
Газомотокомпрессоры ГМК используются на МГ с производительностью до 10 (15) млн м3/сут и широкого применения не находят.
Газоперекачивающие агрегаты ГПА подразделяются по типу привода и по количеству ступеней сжатия газа.
По типу привода ГПА делятся на ГПА с газотурбинным приводом (ГТУ) и ГПА с электродвигателем (СТД). ГПА с ГТУ в свою очередь подразделяются на промышленные ГТУ. Авиационные ГТУ и судовые ГТУ. Единичная мощность ГПА находится в пределах 4-25 МВт, КПД 27 (старые) -36 (новые) %.
По количеству ступеней сжатия ГПА делятся на неполнонапорные и полнонапорные. ГПА с неполнонапорными нагнетателями устанавливают в две (три) ступени сжатия, поскольку они имеют небольшую степень сжатия (1.25-1.35) . Полнонапорные ЦБН имеют большую степень сжатия (1.5-1.7), которая позволяет устанавливать их в одну ступень.
ГМК имеет степень сжатия более 2, ГПА 1.2-1.7.
ЦБН приводятся либо ГТУ, либо электродвигателем с применением (или без) редуктора. Если нагнетатель имеет невысокую степень сжатия (1,25 – 1,35) они называются неполнонапорными, т.к. они не способны создать полный напор (полную степень сжатия) требуемой от КС в целом. Нагнетатели с достаточно высокой степенью сжатия (1,5 – 1,7) называют полнонапорными. В качестве турбопривода нагнетателей используется 4 разновидности ГТУ: стационарные ГТУ, ГТУ на основе авиационных двигателей, ГТУ на базе судовых двигателей, ГТУ импортной поставки. Единичная мощность ГПА находится в пределах 4-25 МВт.
Достоинства ГПА с турбоприводом:
1. отсутствие необходимости в доставке энергоносителя;
2. наличие экономичного способа регулирования режима работы ГПА изменением частоты оборотов ротора нагнетателя.
Недостатки:
1. низкий кпд (16–32%), менее 30% в большинстве случаев;
2. мощные системы смазки и охлаждения.
В качестве электропривода для нагнетателя используются синхронные электродвигатели марок СТД-4000, СТД-10000, СТД-12500.
Достоинства электродвигателей:
1. более высокий кпд (95%) чем у ГТУ;
2. меньшая пожароопасность;
3. лучшая податливость автоматизации;
4. упрощает технологическую схему КС;
5. меньшая площадь застройки КС;
6. независимость мощностей двигателей (при нормальной работе вспомогательных систем) от температуры окружающей среды в отличие от ГТУ.
Недостатки:
1. отсутствие экономичных способов регулирования режимов работы ГПА;
2. более высокая стоимость энергоносителя – электричества;
3. необходимость сооружения дорогостоящих ЛЭП и электрических подстанций не менее чем от 2-х независимых источников электроэнергии.
Пылеуловители (циклонные и масляные) и фильтры-сепараторы.
Ф
ильтры-сепараторы
устанавливают на КС по технико-экономическому
обоснованию. В основном очистку производят
в одну ступень в циклоныых пылеуловителях
(на КС с ГМК– масляные ПУ). Основной
элемент циклонного ПУ – циклон. Принцип
работы – газ закручивается в циклоне
и более тяжелые частицы и вода под
действием гравитационных силы оседают
на стенках и стекают в шламосборник. В
промышленности используются две марки
ПУ: ГП-106 и ГП-144. Эффективность очистки
газа в ПУ 95%. ПУ устанавливаются
параллельно.
где 1–циклонная головка;
2–вертикальный цилиндрический корпус.
При сжатии газа в нагнетателе происходит его нагрев, что влечет за собой ряд негативных моментов: может вызвать чрезмерное напряжение термического характера в трубопроводе; может привести к разрушению антикоррозионной изоляции трубы; нагрев газа может привести к растеплению многолетнемерзлых (и вечномерзлых) грунтов через которые проходит трасса газопровода.
Кроме того, транспорт газа с повышенной температурой не экономичен. Все это привело к необходимости охлаждения газа после его компримирования. На КС охлаждение проводят с помощью аппаратов воздушного охлаждения (АВО).
АВО включают в себя следующие основные узлы и агрегаты: секции оребренных труб различной длины (3-12 м), вентиляторы с электроприводом, диффузоры и жалюзи для регулировки производительности воздуха, несущие конструкции. Все применяемые АВО характеризуются коэффициентом оребрения =7,8-21.
Марки АВО: АВГ, АВЗ, «Крезо-Луар», Ничмен», «Хадсон».
АВО разделяются по числу секций (вентиляторов) на одно и двух секционные; по количеству ходов газа на одно и двух ходовые.
Запорная арматура трубопроводов КС представлена полнопроходными шаровыми кранами, обратными клапанами поворотного типа. Шаровые краны имеют гидропневмопривод с роторным или кулисным механизмом. Движущей силой является импульсный газ из газопровода (проходит спец. Подготовку).
К вспомогательному оборудованию КС относятся устройства, обеспечивающие работу основного оборудования. Это блок подготовки пускового, топливного и импульсного газа. Топливный газ подается в камеру сгорания ГТУ с нужным давлением, очищенный от примесей и подогретый до нужной температуры. Импульсный газ проходит очистку, осушку и хранится в специальном ресивере.
Кроме того, на КС может иметься система утилизации тепла выхлопных газов. Тепло используется в основном для теплоснабжения станции, ни возможны различные варианты использования.
На КС имеется также энергоподстанция с трансформатором, склад масла с насосной станцией и другие вспомогательные объекты.