
- •Электростатика и постоянный ток. Магнетизм Учебное пособие Омск 2007
- •Предисловие
- •Содержание теоретического курса
- •Оформление контрольных работ
- •Порядок оформления задач
- •Электростатика и постоянный ток
- •1.1. Электрический заряд. Закон сохранения заряда. Закон Кулона. Напряженность поля
- •1.2. Принцип суперпозиции электрических полей
- •1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме
- •1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда
- •1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей в вакууме
- •1.6. Электрическое поле в диэлектрических средах. Дипольные моменты молекул диэлектрика. Поляризация диэлектрика
- •1.7. Теорема Гаусса для электростатического поля в среде
- •1.8. Условия для электростатического поля на границе раздела изотропных диэлектрических сред
- •1.9. Проводники в электростатическом поле. Электроемкость проводника
- •1.10. Взаимная ёмкость. Конденсаторы
- •1.11. Потенциальная энергия системы точечных зарядов. Энергия заряженного проводника и электрического поля
- •1.12. Постоянный электрический ток. Сила и плотность тока
- •1.13. Законы постоянного тока. Сторонние силы
- •1.14. Правила Кирхгофа
- •Примеры решения задач
- •Задачи для самоконтроля
- •Контрольное задание № 3
- •2. Магнетизм
- •2.3. Магнитное взаимодействие проводников с токами. Контур с током в магнитном поле
- •2.4. Циркуляция магнитного поля (закон полного тока) в вакууме. Теорема Гаусса для магнитного поля
- •2.5. Работа перемещения проводника с током в постоянном магнитном поле
- •2.6. Движение заряженных частиц в магнитном и электрическом полях
- •2.7. Магнитные моменты электронов и атомов. Намагниченность вещества
- •2.8. Магнитное поле в веществе. Циркуляция магнитного поля (закон полного тока) в веществе
- •2.9. Условия для магнитного поля на границе раздела изотропных сред
- •2.10. Виды магнетиков
- •2.11. Электромагнитная индукция. Основной закон электромагнитной индукции
- •2.12. Явление самоиндукции
- •2.13. Взаимная электромагнитная индукция
- •2.14. Энергия магнитного поля в неферромагнитной изотропной среде
- •2.15. Система уравнений Максвелла
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Контрольное задание № 4
1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда
Работа А, совершаемая кулоновскими силами при малом перемещении dl точечного заряда q в электростатическом поле:
А = Fdl = qEdl = qEdlcos(E,dl),
где Е - напряжённость поля в месте нахождения заряда q. Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории заряда q (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора Е.
Циркуляцией напряжённости Е электрического поля вдоль замкнутого контура L, проведённого в поле, называется линейный интеграл
=
.
Для электростатического поля справедлива теорема о циркуляции: Циркуляция вектора напряженности электростатического поля равна нулю.
.
Это соотношение, выражающее потенциальный характер электростатического поля, справедливо для поля как в вакууме, так и в веществе.
Работа А, совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:
А= - dWП и А1-2= - WП = WП1 - WП2,
где WП1 и WП2 — значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.
Потенциалом электростатического поля называется скалярная физическая величина , равная потенциальной энергии WП положительного единичного точечного заряда, помещённого в рассматриваемую точку поля.
.
Потенциал поля точечного заряда qi в вакууме
=
.
Принцип суперпозиции для потенциала
=
,
т.е. при наложении электростатических полей их потенциалы складываются алгебраически.
Потенциал поля электрического диполя в точке С (рис. 1.2)
.
Если заряды распределены в пространстве непрерывно, то потенциал их поля в вакууме
=
=
.
Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.
Работа А1-2, совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал 1) в точку 2 (потенциал 2):
А1-2 = q (1 - 2).
Если 2 = 0, то 1
=
.
Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.
При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид
Ех =
, Еу =
, Еz
=
и Е = - grad
,
т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.
Геометрическое место точек
электростатического поля, в которых
значения потенциалов одинаковы,
называется эквипотенциальной поверхностью.
Если вектор dl
направлен по касательной к эквипотенциальной
поверхности, то
= 0 и Е
= 0. Это означает, что вектор
напряженности перпендикулярен
эквипотенциальной поверхности в каждой
точке, т.е. E = En.