
- •Тема 1. Предмет, задачи, особенности эконометрики 7
- •Тема 2. Корреляционный и регрессионный анализ – математический метод оценки взаимосвязей экономических явлений 12
- •Введение
- •Тема 1. Предмет, задачи, особенности эконометрики
- •1.1 Cведения об истории возникновения эконометрики
- •1.2. Предмет эконометрики
- •1.3. Особенности эконометрического анализа
- •1.4. Измерения в экономике
- •Строится простая (парная) регрессия в случае, когда среди факторов, влияющих на результативный показатель, есть явно доминирующий фактор.
- •2.1.2. Линейная регрессия сущность, оценка параметров
- •2.1.3. Определение тесноты связи и оценка существенности уравнения регрессии
- •2.1.4 Интервальный прогноз на основе линейного уравнения регрессии
- •2.2. Нелинейная регрессия в экономике и ее линеаризация
- •2.2.1. Виды нелинейных регрессионных моделей, расчет их параметров
- •2.2.2. Оценка корреляции для нелинейной регрессии
- •2.3. Множественная регрессия и корреляция
- •2.3.1. Множественная регрессия. Отбор факторов при построении ее модели На любой экономической показатель чаще всего оказывает влияние не один, а несколько факторов.
- •2.3.2. Расчет параметров и характеристик модели множественной регрессии
- •2.3.3. Частные уравнения множественной регрессии. Индексы множественной и частной корреляции и их расчет
- •2.3.4. Обобщённый метод наименьших квадратов. Гомоскедастичность и гетероскедастичность
- •Тема 3. Информационные технологии в эконометрических исследованиях
- •Сводные экономические показатели рд за 1990-2000 гг.
- •Тема 4. Системы эконометрических уравнений
- •4.1. Понятие о системах эконометрических уравнений
- •Приравнивая это с правой частью 2-го уравнения (4.1) получаем
- •4.2. Проблема идентификации модели
- •4.3. Методы оценки параметров одновременных уравнений
- •Тема 5. Методы и модели анализа динамики экономических процессов
- •5.1. Понятие экономических рядов динамики. Сглаживание временных рядов
- •5.2. Автокорреляционная функция. Коррелограмма
- •5.3. Автокорреляция в остатках. Критерий Дарбина-Уотсона
- •5.4. Моделирование тенденций временного ряда. Адаптивные модели прогнозирования
- •Обычно полагают
- •Тема 6. Макро- и региональные эконометрические модели
- •6.1. Макроэконометрические модели
- •Рассмотрим мультипликативную производственную функцию
- •6.2. Сущность и особенности региональных эконометрических моделей
- •6.3. Филадельфийская модель региональной экономики
- •Тема 7. Моделирование динамических процессов
- •7.1. Характеристика моделей с распределенным лагом и моделей авторегрессии
- •7.2. Выбор вида модели с распределительным лагом
- •7.3. Модели адаптивных ожиданий и неполной корректировки
- •Приложения
- •1. Базовые понятия теории вероятностей
- •1.1. Вероятность. Случайная величина
- •1.2. Числовые характеристики случайных величин
- •1.3. Законы распределений случайных величин
- •2. Базовые понятия статистики
- •2.1. Генеральная совокупность и выборка
- •2.2. Вычисление выборочных характеристик
- •3.Статистические выводы: оценки и проверка гипотез
- •4. Статистическая проверка гипотез
- •Литература
- •Эконометрике
- •Махачкала – 2008
- •Введение.
- •Лабораторная работа №1. «Корреляционный и регрессионный анализ – математический метод оценки взаимосвязей экономических явлений» Часть 1. Парная регрессия и корреляция.
- •1.1. Методические указания
- •1.2 Реализация типовых задач на компьютере.
- •Часть 2. Множественная регрессия и корреляция.
- •2.1. Методические указания
- •Построение системы показателей (факторов). Анализ матрицы коэффициентов парной корреляции
- •Выбор вида модели и оценка ее параметров
- •Проверка качества модели
- •Оценка влияния отдельных факторов на основе модели на зависимую переменную (коэффициенты эластичности и
- •Использование многофакторных моделей для анализа и прогнозирования развития экономических систем
- •2.2.Технология решения задач корреляционного и регрессионного анализа с помощью пакета анализа.
- •Лабораторная работа №2 «Анализ и прогнозирование временных рядов в среде Excel»
- •1. Основные понятия и определения.
- •2. Анализ временных рядов с помощью инструмента Excel-Мастер Диаграмм
Оценка влияния отдельных факторов на основе модели на зависимую переменную (коэффициенты эластичности и
β-коэффициенты)
Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставить факторы по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий при интерпретации применяются средние частные коэффициенты эластичности Э(j) и β -коэффициенты β(t), которые рассчитываются соответственно по формулам:
Э(j)=α(j)Xср/Yср (2.1.14)
β (j)=α(j)Sij/Sy (2.1.15)
где Sij - среднее квадратическое отклонение фактора j.
Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная при изменении фактора. j на 1%. Однако он не учитывает степень колеблемости факторов.
Бета-коэффициент показывает, на какую часть величины среднего квадратического отклонения Sy, изменится зависимая переменная Y с изменением соответствующей независимой переменной Xj на величину своего среднего квадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных.
Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.
Долю влияния фактора в суммарном влиянии всех факторов можно оценить по величине дельта-коэффициентов Δ(j):
Δ(j)=ryj β(j)/R2,
где ryj - коэффициент парной корреляции между фактором j (j = 1, .... m) и зависимой переменной.
Использование многофакторных моделей для анализа и прогнозирования развития экономических систем
Одна из важнейших целей моделирования заключается в прогнозировании поведения исследуемого объекта. Обычно термин «прогнозирование» используется в тех ситуациях, когда требуется предсказать состояние системы в будущем. Для регрессионных моделей он имеет, однако, более широкое значение. Как уже отмечалось, данные могут не иметь временной структуры, но и в этих случаях вполне может возникнуть задача оценить значение зависимой переменной для некоторого набора независимых, объясняющих переменных, которых нет в исходных наблюдениях. Именно в этом смысле - как построение оценки зависимой переменной - и следует понимать прогнозирование в эконометрике.
Проблема прогнозирования имеет много различных аспектов. Можно различать точечное и интервальное прогнозирование. В первом случае оценка - это конкретное число, во втором - интервал, в котором истинное значение переменной находится с заданным уровнем доверия. Кроме того, для временных рядов при нахождении прогноза существенно наличие или отсутствие корреляции по времени между ошибками.
При использовании построенной модели для прогнозирования делается предположение о сохранении в период прогнозирования существовавших ранее взаимосвязей переменных.
Для прогнозирования зависимой переменной на l шагов вперед необходимо знать прогнозные значения всех входящих в нее факторов. Их оценки могут быть получены на основе временных экстраполяционных моделей или заданы пользователем. Эти оценки подставляются в модель, и получаются прогнозные оценки.
Построение
точечных и интервальных прогнозов на
основе регрессионной модели. Какие
факторы влияют на ширину доверительного
интервала? Для того, чтобы определить
область возможных значений результативного
показателя, при рассчитанных значениях
факторов следует учитывать два возможных
источника ошибок: рассеивание наблюдений
относительно линии регрессии и ошибки,
обусловленные математическим аппаратом
построения самой линии регрессии. Ошибки
первого рода измеряются с помощью
характеристик точности, в частности,
величиной
.
Ошибки второго рода обусловлены фиксацией
численного
значения коэффициентов регрессии, в то время как они в действительности являются случайными, нормально распределенными.
Для линейной модели доверительный интервал рассчитывается следующим образом. Оценивается величина отклонения от линии регрессии (обозначим ее буквой U):
(2.1.16)
(2.1.17)
Для модели парной регрессии формула (4.1.16) принимает вид:
(2.1.18)
Коэффициент tα является табличным значением t-статистики Стьюдента при заданном уровне значимости а и числа наблюдений, l - период прогнозирования. Если исследователь задает вероятность попадания прогнозируемой величины внутрь доверительного интервала, равную 70%, то tα = 1.05. Если вероятность составляет 95%, то tα = 1.96, а при 99% tα =2.65.
Как видно из формулы (4.1.18). величина U прямо пропорционально зависит от точности модели ( ), коэффициента доверительной вероятности (tα), степени удаления прогнозной оценки фактора Х от среднего значения и обратно пропорциональна объему наблюдений.
В свою очередь
.
(2.1.19)
В результате получаем следующий интервал прогноза для шага прогнозирования l:
верхняя граница прогноза равна Y(n + l) + U(l),
нижняя граница прогноза равна Y(n + l) + U(l).
Если построенная регрессионная модель адекватна и прогнозные оценки факторов достаточно надежны, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.