
- •6. Квантовые числа
- •7.Типы атомных орбиталей.
- •8. Распределение электронов в атоме
- •12. Электронные конфигурации атомов и ионов.
- •13. Периодический закон д. И. Менделеева.
- •15. Структура периодической системы: период, ряд, группа и подгруппа.
- •17. Энергия ионизации, сродство к электрону, электроотрицательность Энергия ионизации
- •Сродство атома к электрону
- •Электроотрицательность
- •19.Механизм образования ковалентной связи. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •20 Метод валентных связей
- •21 Свойства ковалентной связи
- •22. Гибридизация атомных орбиталей, геометрическая структура молекул.
- •23. Ковалентная связь полярная и неполярная
- •24. Полярность молекул.
- •25. И 26 ионная связь. Ионная химическая связь
- •28. Окислительно- восстановительные процессы.
- •29. 30 Окислители и восстановители.
- •33Основные термодинамические понятия: система, гомогенная и гетерогенная система, изолированная закрытая система, система открытая, параметры состояния системы, термодинамические функции.
- •34 Внутренняя энергия и энтальпия
- •36 Эндотермические и экзотермические процессы.
- •37 Закон Гесса и следствия вытекающие из него Закон Гесса
- •Следствия закона Гесса
- •38 Стандартная энтальпия образования сложного вещества.
- •39Тепловой эффект реакции
- •40 41 Энтропия и изобарно-изотермический потенциал.
- •42 Химическая кинетика.
- •43 Скорость химических реакций
- •44.45 Энергия активации. Уравнение Аррениуса Уравнение Аррениуса
- •46 Зависимость скорости реакции от концентрации реагирующих веществ и давления.
- •47 Закон действующих масс
- •48 И 49 кинетическое уравнение. Константа скорости реакции.
- •50.Влияние темпер. На скорость хим реакции, правило Вант-Гоффа. Влияние температуры на константу скорости реакции
- •51 52. Влияние катализатора на скорость реакции. Катализ
- •53, 54 И 55 Процессы обратимые и необратимые. Химическое равновесие. Константа химического равновесия.
- •56 И 57. Принцип Ле- Шателье. Влияние темпер, концентрации, давления и катализатора на смещение равновесия
- •58 Общая характеристика растворов .
- •59 Способы выражения концентрации растворов
- •60 Молярная, моляльная концентрация, массовая доля, молярная концентрация эквивалентов.
- •61 И 62 давление пара растворов. Закон Рауля для растворов неэлектролитов. Замерзание и кипение растворов
- •63 И 64 Понижение температуры замерзания и повышение температуры кипения раствора. Криоскопия и эбуллиоскопия.
- •65 И 66 осмос, осмотическое давление. Закон вант-Гоффа. Осмотическое давление
- •67 Теория электролитической диссоциации Аррениуса.
- •69Степень и константы диссоциации
- •68 Электролиты сильные и слабые.
- •70 Электролитическая диссоциация сильных и слабых электролитов: кислот, оснований, солей в воде
- •71 Ступенчатая диссоциация.
- •72 Ионные реакции. 73 условия течения реакций обмена в растворах электролитах.
- •74 Электролитическая диссоциация воды. Ионно-молекулярные равновесия
- •Правила составления уравнений ионно-молекулярных реакций
- •75 Ионное произведение воды(kw) 77 pH кислот и оснований. Кислотно-основные равновесия. Водородный показатель рН
- •76 Водородный показатель pH как мера кислотности и щелочности среды.
- •78Понятия об индикаторах.
- •79 Окраска индикаторов в различных средах.
- •80 Гидролиз солей
- •81 Соли гидролизующиеся по аниону катиону, не гидролизирующиеся соли.
- •82 Изменение пш среды при гидролизе.
- •83 Влияние внешних факторов на степень полноты гидролиза
- •84 Электродный потенциал, механизм его возникновения.
- •85 Уравнение Нернста. Уравнение Нернста
- •86 Электрохимический ряд напряжений металлов.
- •87 Типы электродов
- •Механизм возникновения электродных потенциалов и определение их величин
- •88 Гальванические элементы. 90 поляризация
- •89 Измерение электродвижущей силы.
- •91 Химические источники тока: аккумуляторы, топливные элементы.
- •92 Коррозия металлов.
- •93 Виды коррозии.
- •Химическая коррозия
- •94 Механизм Электрохимической коррозии Электрохимическая коррозия
- •95.Защита металлов от коррозии
- •Защита металлов на стадии проектирования
- •Защита от коррозии на стадии изготовления
- •Защита от коррозии на стадии эксплуатации
- •Защита путём уменьшения агрессивности среды
- •97 Аналитический сигнал
- •98. Основы качественного и количественного анализа.
- •Количественный химический анализ
- •99 Качественные реакции на ионы
Количественный химический анализ
Сущность титриметрического (объёмного) анализа
Сущность титриметрического анализа состоит в определении концентрации веществ, проводимом титрованием.
Титрование осуществляется путём прибавления к точно измеренному объёму исследуемого раствора одного вещества по каплям из бюретки стандартного раствора другого вещества
Титрование ведется до точки эквивалентности. В точке эквивалентности количества эквивалентов реагирующих веществ равны. Раствор, концентрация которого определяется, называется исследуемым, а второй, концентрация которого точно известна, - рабочим.
Молярная концентрация эквивалента Сэ выражает число эквивалентов растворённого вещества в единице объёма V, следовательно, произведение Сэ V соответствует числу эквивалентов вещества.
Если индексом «1» обозначить раствор исследуемого вещества, а индексом «2» - рабочий раствор, то в точке эквивалентности соблюдается закон эквивалентности:Сэ (1) V(1) = Сэ (2) V(2).
Измерив в процессе титрования объёмы исследуемого и рабочего растворов и зная концентрацию рабочего раствора, можно вычислить концентрацию раствора исследуемого вещества.
В методе нейтрализации, сущность которого состоит во взаимодействииН+ + ОН = Н2О,
точка эквивалентности определяется по изменению окраски кислотно-основных индикаторов,таких как метилоранж, фенолфталеин и др.
99 Качественные реакции на ионы
Ниже приводятся некоторые качественные реакции.
Обнаружение ионов железа (II) и (III)Катион железа (III) легко обнаруживается с помощью бесцветного раствора, содержащего тиоцианат-ион NCS‾ (роданид-ион). При действии NCS‾ на раствор соли железа (III) образуется соединение кроваво-красного цвета − тиоцианат железа (III) Fе(NCS)3:
Fe3+ + 3 NCS‾ → Fe(CNS)3.
Гексацианоферрат (II) калия (жёлтая кровяная соль) также является специфическим реактивом на ион железа (III):
3K4[Fe(CN)6] + 4Fe3+ → Fe4[Fe(CN)6]3 + 12К+.
Образуется берлинская лазурь.
Гексацианоферрат (III) калия (красная кровяная соль) является специфическим реактивом на ион железа (II):
2K3[Fe(CN)6] + 3Fe2+ → Fe3[Fe(CN)6]2 + 6К+.
Образуется турнбулева синь.
Обнаружение ионов К+ и Na+
Катионы натрия и калия относятся к I аналитической группе, которая характеризуется отсутствием группового реагента, т. е. реактива, способного осаждать все катионы этой группы из их растворов.
Летучие соединения металлов окрашивают пламя горелки:
К+ в фиолетовый цвет,
Na+ в жёлтый цвет.
Обнаружение ионов ионов S-элeментов IIA группы
ИонMg2+
Групповой реагент карбонат аммония (NH4)2СОз с раствором соли магния образует белый аморфный осадок основной соли (MgOH)2CO3, растворимый в избытке NH4Cl:
2MgCl2 + 2(NH4) 2CO3 + Н2О → (MgOH) 2CO3↓+ СО2 + 4NH4Cl,
2Mg2+ + 2CO32- + Н2О → (MgOH)2CO3↓ + CO2.
Едкие щелочи и гидроксид аммония образуют с растворами солей магния белый аморфный осадок Mg(OH)2, хорошо растворимый в кислотах и растворах аммонийных солей:
Mg2+ + 2OН‾ → Mg(OH)2↓.
Растворение в кислотах:
Mg(OH)2 + 2H+ → Mg2+ + 2Н2O.
Растворение в растворах аммонийных солей:
Mg(OH)2 + 2NH4+ ↔ Mg2+ + 2NH4OH.
Ион Ва2+
Групповой реагент карбонат аммония (NН4)2СО3 осаждает катион Ва2+ из растворов его солей в виде белого аморфного постепенно кристаллизующегося осадка ВаСО3:
BaCl2 + (NH4) 2CO3 → ВаСО3↓ + 2NH4Cl,
Ва2+ + CO32‾ → ВаСО3↓.
Осадок хорошо растворим в кислотах, в том числе и слабых.
Дихромат калия К2Сг2O7 образует с раствором соли бария желтый осадок ВаСгO4, нерастворимый в уксусной кислоте, в отличие от хромата стронция (хромат кальция хорошо растворяется в воде):
2Ba2+ + Сг2O72- + Н2O → 2ВаСгO4↓ + 2H+.
Реакцию проводят при избытке CH3COONa, который реагирует с образующимися ионами Н+, смещая равновесие вправо вследствие образования малодиссоциированной уксусной кислоты:
СН3СОO‾ + Н+ → СН3СООН.
Ион Ba2+ также можно обнаружить с помощью сульфат-иона SO42‾:
Ba2+ + SO42- → BaSO4↓
Образуется творожистый белый осадок.
Ион Са2+
Групповой реагент карбонат аммония (NН4)2СО3 осаждает из растворов солей кальция аморфный белый осадок СаСО3, который при нагревании переходит в кристаллический:
CaCl2 + (NH4) 2CO3 → СаСО3↓ + 2NH4C1,
Ca2+ + CO32‾ → СаСО3↓.
Осадок легко растворяется в минеральных и уксусной кислотах.
Оксалат аммония (NH4)2C2O4 образует с раствором соли кальция белый кристаллический осадок, растворимый в соляной, но не растворимый в уксусной кислоте:
CaCl2 + (NH4)2C2O4 → СаС2O4↓ + 2NH4C1,
Ca2+ + С2O42‾ → СаС2O4↓.
Аналогичный осадок дают ионы Ва2+ и Sr2+. Поэтому этой реакцией можно обнаружить Са2+ только при отсутствии ионов бария и стронция.
Ион Sr2+
Групповой реагент карбонат аммония (NН4)2СО3 осаждает карбонат стронция белого цвета, растворимый в уксусной, соляной и азотной кислотах:
SrCl2 + (NH4)2CO3 → SrCO3↓ + 2NH4C1.
Насыщенный раствор гипса CaSO4. 2H2O (гипсовая вода) образует с ионами Sr2+ белый осадок сульфата стронция:
Sr2+ + SO42‾ → SrSO4↓.
Однако при действии гипсовой воды ион стронция дает не обильный осадок, а только помутнение, появляющееся не сразу из-за образования пересыщенного раствора. Появление осадка ускоряют нагреванием.
Реакция служит для обнаружения Sr2+ только при отсутствии Ba2+, которой с гипсовой водой вызывает помутнение, появляющееся сразу, так как растворимость BaSO4 меньше растворимости SrSO4 (Ks0(BaSO4) = 1,1 . 10-10, Ks0(SrSO4) = 2,8 . 10-7).
Гипсовая вода не образует осадков с растворами солей кальция ни на холоду, ни при нагревании. Этим ион Ca2+ отличается от ионов Ba2+ и Sr2
100. ФИЗИКО-ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Любое (физическое, химическое, физико-химическое) явление, в результате которого изменяются свойства системы, может служить основанием для проведения анализа, если есть возможность зафиксировать эти изменения качественно или количественно.
Следует отметить, что многие методы идентификации весьма затруднительно отнести строго к химическим, физико-химическим или физическим. В первом приближении можно считать, что основанием для появления аналитического сигнала в химических методах служит химическая реакция, в физико-химических методах аналитическим сигналом является физическое явление, возникшее в результате химической реакции, а в физических методах фиксируется определённое физическое свойство аналита.
Различают прямые и косвенные методы. В прямых методахданное свойство является критерием содержания вещества, т.е. изучаются соотношения между составом и свойствами. В косвенныхметодах анализа изменение аналитического сигнала указывает на окончание реакции и используется для фиксирования этого момента. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), которые дают информацию о составе и свойствах среды, в которой они находятся.
Инструментальные методы идентификации очень многочисленны. Табл. 6.3 представляет классификацию некоторых из них.
Таблица 6.3
Групповое название методов |
Основание для появления аналитического сигнала |
Аналитический сигнал, методы идентификации |
Оптические |
Появление спектра в результате взаимодействия электромагнитного излучения с атомами или молекулами анализируемого вещества |
Спектры поглощения: · атомно-абсорбционная спектроскопия (спектрофотометрия ) · фотоколориметрия |
Спектры излучения: · эмиссионная спектроскопия · люминесцентная спектроскопия |
||
Спектры отражения: · нефелометрия взвесей |
||
Электрохимические |
Окислительно-восстановительные |
Электродный потенциал, ЭДС · потенциометрия |
Электропроводимость · кондуктометрия |
||
Количество электричества · кулонометрия |
||
Хроматографические |
Сорбция |
· сорбционная хроматография |
Растворимость |
· распределительная хроматография |
|
Ионный обмен |
· ионообменная хроматография |
|
Термические |
Энергетические эффекты физико-химических превращений |
Изменение энтальпии · калориметрия |
Разность температур · дифференциально-термический (ДТА) |
||
Изменения массы · термогравиметрический (ТГА) |
||
Ядерно-химические |
Образование радиоактивных изотопов |
· радиоактивационный |