
- •Вопрос 1 Вектор. Линейные операции над векторами. Базисы на плоскости и в пространстве. Декартова система координат. Проекции и координаты вектора.
- •Вопрос 4 Матрицы и их основные свойства. Действия над ними
- •Вопрос 8. Векторное произведение векторов. Основные свойства. Векторным произведением вектора на вектор называется вектор, обозначаемый символом и определяемый следующими тремя условиями:
- •Вопрос 10. Различные способы задания прямой на плоскости.
- •Вопрос 11. Взаимное расположение двух прямых на плоскости.
- •Вопрос 15. Расстояние от точки до плоскости.
- •Вопрос 16. Различные способы задания прямой в пространстве.
- •Вопрос 17. Взаимное расположение прямой и плоскости. Расстояние от точки до прямой в пространстве.
- •Вопрос 18. Эллипс. Каноническое уравнение.
- •Вопрос 20. Парабола. Каноническое уравнение.
- •Вопрос 21. Классификация кривых второго порядка.
- •Вопрос 22. Поверхности второго порядка.
- •Вопрос 23. Линейное пространство. Базис и размерность линейного пространства.
- •Вопрос 24. Линейный оператор. Матрица линейного оператора. Ядро и образ линейного оператора.
- •Вопрос 25. Матрица линейного оператора в новом базисе.
- •Вопрос 26. Собственные векторы и собственные значения линейных операторов.
- •Вопрос 27. Теорема Кронекера-Капелли.
- •Вопрос 28. Решение системы линейных уравнений методом Крамера.
- •Вопрос 29. Решение системы линейных уравнений методом Гаусса.
- •Вопрос 30. Решение системы линейных уравнений матричным методом.
- •Вопрос 31. Множества и операции над ними.
- •Вопрос 32. Свойства действительных чисел.
- •Вопрос 33. Модуль действительного числа. Неравенство треугольника.
- •Вопрос 34. Грани числовых множеств.
- •Существование грани множества
- •Принцип вложенных отрезков
- •Вопрос 35. Числовые последовательности (предел, переход к пределу в неравенствах)
Вопрос 31. Множества и операции над ними.
Множество - это совокупность, набор элементов, объединенных общими свойствами.
Множества
обозначаются заглавными латинскими
буквами
,
а элементы множества строчными латинскими
буквами
.
Запись
означает,
что есть множество
с
элементами
,
которые связаны между собой какой-то
функцией
.
Замечание. Элементы в множество входят по одному разу, т.е. без повторений.
Основные операции:
Принадлежность элемента множеству:
где
--
элемент и
--
множество (элемент
принадлежит
множеству
).
Непринадлежность элемента множеству:
где -- элемент и -- множество (элемент не принадлежит множеству ).
Объединение множеств:
.
Объединением
двух множеств
и
называется
множество
,
которое состоит из элементов
множеств
и
,
т.е.
или
Пересечение множеств:
.
Пересечением двух множеств и называется множество , которое состоит из общих элементов множеств и , т.е.
и
Разность множеств:
.
Разностью двух множеств и , например, множество минус множество , называется множество , которое состоит из элементов множества , которых нет в множестве , т.е.
и
Симметрическая разность множеств:
.
Симметрической разностью двух множеств и называется множество , которое состоит из не общих элементов множеств и , т.е.
Дополнение множества:
.
Если
предположим, что множество
является
подмножеством некоторого универсального
множества
,
тогда определяется операция дополнения:
и
Вхождение одного множества в другое множество:
.
Если любой элемент множества является элементом множества , то говорят, что множество есть подмножество множества (множество входит в множество ).
Не вхождение одного множества в другое множество:
.
Если существует элемент множества , который не является элементом множества , то говорят, что множество не подмножество множества (множество не входит в множество ).
Вопрос 32. Свойства действительных чисел.
Действительные числа образуют совокупность элементов, обладающую следующими свойствами.
Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются и
a + b и ab (замкнутость), (1)
a + b = b + a, ab = ba (коммутативность), (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность), (3)
a * 1 = a (единица), (4)
a(b + c) = ab + ac (дистрибутивность), (5)
;из a + c = b + c следует a = b,
из ca = cb,
,
следует a = b (сокращение). (6)
Действительное число 0 (нуль) обладает свойствами a + 0 = a, a * 0 = 0 для каждого действительного числа a.
(Единственное) противоположное число -a и (единственное) обратное число a -1 = 1/a для действительного числа a определяются соответственно так:
a +
(-a)
= a - a =
0, aa -1 =
1 (
).
Помимо "алгебраических" свойств, класс положительных целых, или натуральных, чисел 1, 2, ... обладает свойством упорядоченности (n > m, если n = m + x, где x - некоторое натуральное число) и полной упорядоченности (каждое непустое множество натуральных чисел имеет наименьший элемент). Множество натуральных чисел, содержащее число 1 и для каждого из своих элементов n следующий за ним элемент n + 1, содержит все натуральные числа (принцип полной индукции).
Свойства
натуральных чисел могут быть выведены
из пяти
аксиом Пеано:
1) 1 есть натуральное число; 2) для каждого
натурального числа Nсуществует
единственное следующее за ним натуральное
число S(n);
3)
;
4) из S(n)
= S(m)
следует n = m и
5) имеет место принцип полной индукции.
(При его формулировке элемент, следующий
за n,
обозначается через S(n).)
Сложение и умножение, подчиняющиеся
правилам (1)-(6), определяются "рекуррентными"
соотношениями
n + 1 = S(n), n + S(m) = S(n + m), n*1 = n, n*S(m) = n*m + n.
Целыми числами
называются числа вида n,
-n и
0, где n -
натуральное число, а рациональными -
числа вида p/q,
где p и q -
целые числа и
.
Действительные числа можно ввести, исходя из множества рациональных чисел, с помощью предельного процесса. Действительные числа, не являющиеся рациональными, называются иррациональными.
Действительными алгебраическими числами называются действительные корни алгебраических уравнений с целочисленными коэффициентами, а действительными трансцендентными числами - остальные действительные числа.
Класс всех рациональных чисел содержит корни всех линейных уравнений с рациональными коэффициентами и включает в себя все целые числа. Класс всех действительных алгебраических чисел содержит действительные корни всех алгебраических уравнений с алгебраическими коэффициентами и включает в себя все рациональные числа.
Отношение
равенства. Из a = b следует b = a (симметрия
отношения равенства), a + c = b + c и ac = bc (вообще f(a)
= f(b),
если f(a)
обозначает некоторую операцию, приводящую
к единственному результату).
Из a = b и b = c следует a = c (транзитивность
отношения равенства). Из
следует
и
.
Отношение
тождества. Вообще
говоря, уравнение относительно какой-либо
величины x или
нескольких величин x1, x2,
... будет удовлетворяться только при
некоторых специальных значениях x или
специальных множествах значений x1, x2,
... Если хотят подчеркнуть тот факт, что
какое-нибудь уравнение удовлетворяется
при всех значениях x или x1, x2,
... в известных представляющих интерес
пределах, то вместо символа = иногда
пользуются символом тождества
(пример:
(x -
1)(x +
1)
x2 -
1), а пределы изменения рассматриваемых
переменных иногда указывают справа от
уравнения. Символ a
b употребляется
также в смысле: "a по
определению равно b".
Неравенства. Действительное число a может быть положительно (a > 0), отрицательно (a < 0) или равно нулю (a = 0). Сумма и произведение положительных чисел положительны.
Действительное число a больше действительного числа b (a > b, b < a), если a = b + x, где x - некоторое действительное положительное число. Из a > b следует a + c > b + c, ac > bc, если c > 0, и ac < bc, если c < 0 (в частности, -a < -b), 1/a < 1/b, если ab > 0 и 1/a > 1/b, если ab < 0.
Из
и
следует
.
Из
и
следует
.
Абсолютные
величины. Абсолютная
величина |a|
действительного числа a по
определению есть число, равное a,
если
,
и равное -a,
еслиa <
0. Отметим:
Из
и
следует
и
.