
- •Вопрос 1 Вектор. Линейные операции над векторами. Базисы на плоскости и в пространстве. Декартова система координат. Проекции и координаты вектора.
- •Вопрос 4 Матрицы и их основные свойства. Действия над ними
- •Вопрос 8. Векторное произведение векторов. Основные свойства. Векторным произведением вектора на вектор называется вектор, обозначаемый символом и определяемый следующими тремя условиями:
- •Вопрос 10. Различные способы задания прямой на плоскости.
- •Вопрос 11. Взаимное расположение двух прямых на плоскости.
- •Вопрос 15. Расстояние от точки до плоскости.
- •Вопрос 16. Различные способы задания прямой в пространстве.
- •Вопрос 17. Взаимное расположение прямой и плоскости. Расстояние от точки до прямой в пространстве.
- •Вопрос 18. Эллипс. Каноническое уравнение.
- •Вопрос 20. Парабола. Каноническое уравнение.
- •Вопрос 21. Классификация кривых второго порядка.
- •Вопрос 22. Поверхности второго порядка.
- •Вопрос 23. Линейное пространство. Базис и размерность линейного пространства.
- •Вопрос 24. Линейный оператор. Матрица линейного оператора. Ядро и образ линейного оператора.
- •Вопрос 25. Матрица линейного оператора в новом базисе.
- •Вопрос 26. Собственные векторы и собственные значения линейных операторов.
- •Вопрос 27. Теорема Кронекера-Капелли.
- •Вопрос 28. Решение системы линейных уравнений методом Крамера.
- •Вопрос 29. Решение системы линейных уравнений методом Гаусса.
- •Вопрос 30. Решение системы линейных уравнений матричным методом.
- •Вопрос 31. Множества и операции над ними.
- •Вопрос 32. Свойства действительных чисел.
- •Вопрос 33. Модуль действительного числа. Неравенство треугольника.
- •Вопрос 34. Грани числовых множеств.
- •Существование грани множества
- •Принцип вложенных отрезков
- •Вопрос 35. Числовые последовательности (предел, переход к пределу в неравенствах)
Вопрос 30. Решение системы линейных уравнений матричным методом.
Как и в методах Гаусса и Крамера первоначально надо проверить, имеет ли система уравнений решение по теореме Кронекера-Копелли. Затем для решения матричным методом необходимо ввести в рассмотрение матрицы-столбцы для неизвестных X и свободных членов B. Тогда систему линейных уравнений можно записать в матричной форме AX=B. Умножив это матричное уравнение на A-1, получим A-1AX= A-1B, откуда EX=X=A-1B. Следовательно, матрица-решение X легко находится как произведение A-1 и B.
Для большей ясности решим небольшой пример методом обратной матрицы:
21x1-45x2-3.5x3=10
12x1-16x2+21x3=-16
14x1+13x2-8x3=10
Определим совместность системы уравнений. По теореме Кронекера-Копелли для того, что бы система линейных алгебраических уравнений была совместна (имела решение), необходимо и достаточно, что бы ранг основной матрицы
A= |
|
и ранг расширенной матрицы
B= |
|
были равны. Так как rang|A|=3 равен rang|B|=3 и равен количеству неизвестных n=3, то система имеет единственное решение.
Для решения методом обратной матрицы необходимо ввести матричные обозначения
A= |
|
X= |
|
C= |
|
, то X=A-1C |
Найдем обратную матрицу A-1. Как ее найти, показывать не будем. Воспользовавшись нашии онлайн калькулятором, вы сможете выбрать один из двух способов для ее нахождения. Она будет иметь вид.
A-1= |
|
Для нахождения матрицы X умножим обратную матрицу А-1 на матрицу С
|
|
= |
|
Получили решение системы уравнений X1=0.227 X2=-0.209 X3=-1.194