Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1вариант.docx
Скачиваний:
8
Добавлен:
27.04.2019
Размер:
602.82 Кб
Скачать

8.5. Основні методи вимірів електричних параметрів конденсатора.

Основними методами вимірів ємності є такі:

- метод трьох приладів – амперметра, вольтметра та ватметра;

- за допомогою приладів безпосередньої оцінки –фарадометрів;

- за допомогою приладів зрівняння – вимірювальних мостів змінного струму;

- за допомогою цифрових вимірювачів CLR.

Найбільш точними приладами вимірів вважаються вимірювальні мости змінного струму, оскільки у них застосовується найбільш точний нульовий метод порівняння. Принципова електрична схема вимірювального моста складається з трьох основним елементів:

1 . Власне 4-плечевого моста, що призначений для відтворення та регулювання міри, з якою зрівнюється невідома вимірювальна величина Сx. Перше плече моста Z1 призначене для підключення до його затискачів котушки з невідомою індуктивністю Сx. В інші плечі моста (Z2, Z3,Z4) ввімкнені магазини зразкових резисторів, а також магазин зразкових конденсаторів, який в залежності від вимірювальної величини Сx вмикається в друге або в третє плече моста.

2. Джерело живлення змінної напруги «е» призначене для забезпечення власне моста необхідною величиною робочого струму ір.

3. Нуль-індикатор – (НІ) служить для визначення моменту повної рівноваги вимірювального моста, що і є ознакою повного без залишку врівноваження невідомої величини Сx відомою мірою, відтвореною вимірювальним мостом.

9. Електронні аналогові прилади. Будова та принцип дії електронного осцилографа.

Электронно-лучевые (электронные) ос­циллографы предназначены для визуального наблюдения, изме­рения и регистрации электрических сигналов. Возможность на­блюдения изменяющихся во времени сигналов делает осцилло­графы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографов являются широкий час­тотный диапазон, высокая чувствительность и большое входное сопротивление. Все это обусловило их широкое практическое применение.

Осциллогра­фы могут быть предназначены для наблюдения и измерения непрерывных или импульсных процессов; периодических и непериодических сигналов непрерывного и импульсного харак­тера в широком (до 100 МГц) диапазоне частот. Выпускаются также осциллографы специального назначения: многофункцио­нальные со сменными входными блоками, запоминающие для регистрации одиночных импульсов, стробоскопические для иссле­дования высокочастотных процессов и другие. По количеству одновременно исследуемых сигналов осциллографы могут быть одноканальными и двухканальны­ми. В последнее время получили распространение цифровые электронные осциллографы.

Осциллографы могут различаться чувствительностью, поло­сой пропускания, погрешностью воспроизведения формы кривой и другими характеристиками.

В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электронно-лучевой трубки.

Основные характеристики осциллографов. Коэффициент от­клонения отношение напряжения входного сигнала к от­клонению луча (в делениях шкалы), вызванному этим напряже­нием. У наиболее распространенных осциллографов коэффициент отклонения находится в диапазоне 50 мкВ/дел —-10 В/дел. Ко­эффициент отклонения — параметр, обратный чувствительности осциллографа к напряжению.

Полоса пропускания — диапазон частот, в пределах которого коэффициент отклонения изменяется не более чем на 3 дБ (при­мерно 30 %) относительно его значения на некоторой средней (опорной) частоте. Для низкочастотных осциллографов полоса пропускания находится в диапазоне от 0 до 1—5 МГц; для уни­версальных осциллографов верхняя частота достигает десятков мегагерц, для высокочастотных — сотен мегагерц.

Для измерения импульсных сигналов важными являются па­раметры переходной характеристики — время нарастания пере­ходной характеристики и максимальный выброс.

Коэффициент развертки отношение времени к откло­нению луча, вызванному напряжением развертки за это время. Коэффициент развертки — параметр, обратный ско­рости перемещения луча по оси X.

Основная погрешность измерения напряжения и основная погрешность измерения временных интервалов определяются максимально допускаемыми погрешностями измерения соответ­ствующих параметров при подаче на вход осциллографа стан­дартного сигнала синусоидальной или прямоугольной формы. В зависимости от значений этих погрешностей выпускают осцил­лографы четырех классов точности — 1, 2, 3, 4, имеющих, соответственно, основные погрешности измерений, не превышаю­щие 3, 5, 10, 12 %. Часто вместо основных погрешностей измере­ний нормируют основные погрешности коэффициента отклонений и коэффициента развертки, а также нелинейность отклонения и развертки.

Параметры входов осциллографа определяются входным ак­тивным сопротивлением и входной емкостью. Обычно входное сопротивление более 1 МОм, а входная емкость составляет десятки пикофарад.

Устройство и принцип действия осциллографа. Упрощенная функциональная схема осциллографа включает в себя электронно-лучевую трубку, входной делитель напряжения, усилитель вертикального отклонения, состоящий из предварительного усилителя, линии задержки и выходно­го усилителя, блок синхронизации, генератор развертки, усилитель горизонтального отклонения и калибраторы амплитуды и длительности.

Исследуемый сигнал подается на вход Y канала вертикально­го отклонения, включающего в себя входной делитель и усили­тель вертикального отклонения. Выходное напряжение усилителя, по­ступая на вертикальные отклоняющие пластины, управляет от­клонением электронного луча в трубке по оси Y. Для получения требуемого размера изображения на экране входной сигнал уси­ливается (или ослабевает) в канале вертикального отклонения до необходимого значения, определяемого чувствительностью труб­ки. Последовательное включение делителя напряжения и усили­теля вертикального отклонения обеспечивает значительный диа­пазон исследуемых напряжений.

При подаче переменного напряжения на вход Y электронный луч вычерчивает на экране осциллографа вертикальную линию. Для получения изображения, развернутого во времени, необходимо смещать (развертывать) луч по оси Х с равномерной скоростью. Это осуществляется подачей на отклоняющие пластины линейно изменяющегося пилообраз­ного напряжения. При равенстве периодов напряжений и развертки на экране получается неподвижное изобра­жение одного периода исследуемого сигнала. При увеличении периода пилообразного напряжения в п раз на экране появит­ся изображение п периодов исследуемого сигнала.

Напряжение развертки вырабатывает генератор развертки. Реальная кривая напряжения развертки имеет время прямого и время обратного хода - время возвращения луча в исходное положение. Для того чтобы во время обратного хода электронный луч не вычерчивал линии на экране осциллографа, его гасят на это время путем подачи отри­цательного импульса на модулятор. Исследование сигналов в ши­роком диапазоне частот обеспечивается переключением частоты пилообразного напряжения, предусмотренном в генераторе раз­вертки. Это позволяет проводить наблюдения исследуемых сигна­лов в нужном масштабе времени. Выходное напряжение генера­тора усиливается до значения, необходимого для управления электронным лучом в ЭЛТ и получения изображения требуемого размера.

Для получения устойчивого изображения на экране осцил­лографа частота пилообразного напряжения развертки должна быть кратна частоте исследуемого сигнала. Выдержать точно кратность частот на практике оказывается сложно вследствие «ухода» частоты генератора и изменения частоты исследуемого сигнала. Это приводит к не­устойчивости изображения сигнала. Для обеспечения устойчивости изображения в осциллографе имеется блок синхронизации, который осуществляет изменение частоты генератора (в некоторых пределах) в соответствии с частотой исследуемого процесса. Для этого сигнал из канала вертикально­го отклонения подается на блок синхронизации, на выходе кото­рого вырабатываются импульсы синхронно с изменением иссле­дуемого сигнала для управления генератором развертки, прину­дительно заставляя его работать с частотой, кратной частоте входного сигнала. Такой режим работы генератора развертки называется непрерывным. Он применяется при наблюдении пери­одических сигналов. При исследовании непериодической после­довательности импульсов или одиночных импульсов непрерывный режим работы приводит к тому, что положение изображения импульсов на экране по оси времени становится неопределенным. В этом случае применяют ждущий режим работы генератора, при котором генератор развертки вырабатывает пилообразный импульс только с прихо­дом исследуемого импульса. При таком режиме обеспечивается устойчивое положение изображения этих импульсов на экране.

В осциллографах предусматривается также возможность за­пуска генератора развертки от внешнего источника (внешняя синхрони­зация). Для этого имеется специальный вход «Вход синхрониза­ции» и переключатель.

Для расширения функциональных возможностей осциллогра­фа имеются дополнительные входы, позволяющие осуществить управление электронным лучом. Во многих осциллографах пре­дусмотрена возможность управления отклонением луча по оси Х внешним напряжением. Для этого у осциллографа есть «Вход X», на который подается внешнее управляющее напряжение, и соответствующий переключатель. В осциллографах имеются так­же зажимы «Вход пластин X» и «Вход пластин Y», позволяющие подавать внешнее напряжение непосредственно на пластины электронно-лучевой трубки. В некоторых осциллографах имеется вход Z, который через разделительный конденсатор (или специ­альный усилитель) соединен с модулятором М электронно-луче­вой трубки. Подавая импульсы напряжения на этот вход, можно модулировать (изменять) яркость свечения изображения на экране. Это позволяет, например, отмечать характерные точки на изображении, подавая импульсы на вход Z в необходимые мо­менты времени.

При измерении амплитудных и временных параметров иссле­дуемых сигналов обычно измеряют соответствующие геометриче­ские размеры изображения сигнала на экране и с помощью ко­эффициентов отклонения и коэффициентов развертки, характеризующих чувствительность каналов, определяют значения этих параметров. Для повышения точности измерений осциллографы имеют калибраторы амплитуды и длительно­сти, позволяющие контролировать и устанавливать номи­нальные значения коэффициентов отклонения и коэффициентов развертки. Калибраторы представляют собой генераторы прямоугольных импульсов с известными значениями амплитуды и частоты. Меняя усиление, добиваются нормированного отклонения луча на экране, что приводит к установке соответствующего коэффициента отклонения. По периоду калибровочного импульса можно проверить или установить нормированное значение ко­эффициента развертки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]