
- •1. Індукційні прилади. Конструкція, принцип дії однофазного лічильника. Вивід формули Wл. Переваги та недоліки.
- •2. Прилади електростатичної системи.
- •3. Електровимірювальні прилади з термічним перетворювачем.
- •4. Методи вимірів потужності в колах постійного та змінного струмів за допомогою приладів електродинамічної та феродинамічної системи.
- •5. Методи вимірів активної та реактивної потужностей в колах трифазного струму за допомогою приладів електродинамічної та феродинамічної системи.
- •6. Вимірювання сили електричного струму та падіння напруги.
- •7. Прилади зрівняння:
- •7.1. Потенціометри (компенсатори) постійного струму. Призначення та принцип їх дії. Умови компенсації;
- •7.2. Потенціометри змінного струму. Призначення та принцип їх дії. Умови компенсації;
- •7.3. Одинарний міст постійного струму. Електричні схеми та принцип дії.
- •8. Вимірювання параметрів електричного кола:
- •8.1. Основні методи та особливості вимірів опору малого та середнього значення;
- •8.2. Основні методи та особливості вимірів опору заземлення. Види та допустимі значення опору заземлення
- •8.3. Основні методи та особливості вимірів опору великого значення, опору ізоляції;
- •8.4. Основні методи вимірів електричних параметрів котушки індуктивності. Вимірювання взаємоінуктивності;
- •8.5. Основні методи вимірів електричних параметрів конденсатора.
- •9. Електронні аналогові прилади. Будова та принцип дії електронного осцилографа.
- •10. Основні методи вимірів за допомогою електронних осцилографів:
- •10.1. Виміри амплітудно-часових характеристик змінного електричного сигналу;
- •10.2. Виміри частоти змінного електричного сигналу;
- •10.3. Вимірювання параметрів динамічної петлі гістерезису;
- •10.4. Виміри кута зсуву фаз між двома змінними електричними сигналами.
- •11. Сучасні цифрові осцилографи.
- •12. Основи побудови сучасних інформаційно-вимірювальних комплексів.
- •13. Інформаційно-діагностичний комплекс «Регіна».
4. Методи вимірів потужності в колах постійного та змінного струмів за допомогою приладів електродинамічної та феродинамічної системи.
Для измерения мощности в цепях постоянного и переменного однофазного тока применяют электродинамические и ферродинамические ваттметры, принцип действия и схемы включения которых рассмотрены ранее.
Для точных измерений мощности постоянного и переменного тока на частоте (до 5000 Гц) выпускают электродинамические ваттметры в виде переносных приборов классов точности 0,1-0,5.
Для измерений мощности в производственных условиях в цепях переменного тока промышленной или более высоких фиксированных частот (400, 500 Гц) применяют щитовые ферродинамические ваттметры классов точности 1,5—-2,5.
Для измерений мощности на высоких частотах применяют термоэлектрические и электронные ваттметры.
Для измерений мощности при больших токах и напряжениях ваттметры обычно включают через измерительные трансформаторы тока и напряжения.
Находят применение также косвенные методы измерения мощности постоянного и однофазного переменного тока. Мощность постоянного тока можно определить с помощью двух приборов: амперметра и вольтметра, а мощность однофазного переменного тока - с помощью трех приборов: амперметра, вольтметра и фазометра. При различных схемах включения приборов значения методических погрешностей измерения мощности оказываются различными, зависящими от соотношений сопротивлений приборов и нагрузки. При косвенном измерении мощности необходимо производить одновременный отсчет по двум или трем приборам. Кроме того, при этом снижается точность измерения за счет суммирования инструментальных погрешностей приборов. Например, прямые измерения мощности однофазного переменного тока могут быть проведены с наименьшей погрешностью ±0,1 %, в то время как при косвенных измерениях мощности измерение только коэффициента мощности возможно с наименьшей погрешностью ±0,5 %, а следовательно, общая погрешность будет превышать ±0,5 %.
Для измерения мощности переменного тока иногда применяют электронный осциллограф, в частности для определения мощности потерь на гистерезис в ферромагнитных материалах. При этом площадь гистерезисной петли оказывается пропорциональной мощности потерь.
Измерение энергии постоянного тока осуществляют с помощью счетчиков постоянного тока.
Энергию однофазного переменного тока измеряют индукционными счетчиками электрической энергии.
Электрическую энергию можно измерять также с помощью электронных счетчиков электрической энергии, не имеющих подвижных частей. Такие счетчики обладают лучшими метрологическими характеристиками и большей надежностью и являются перспективными средствами измерений электрической энергии.
5. Методи вимірів активної та реактивної потужностей в колах трифазного струму за допомогою приладів електродинамічної та феродинамічної системи.
Измерение активной мощности и энергии в трехфазных цепях.
В трехфазной системе независимо от схемы соединения нагрузки (треугольником или звездой) мгновенное значение мощности р системы равняется сумме мгновенных значений мощности отдельных фаз. Для измерения мощности, а следовательно, и энергии трехфазной системы могут быть применены один прибор, два прибора или три прибора. Метод одного прибора применяется в симметричных трехфазных системах. В асимметричной системе, в которой значения токов, напряжений и углов фазового сдвига неодинаковы, используется метод двух приборов
Наконец, в самом общем случае, в том числе и в четырехпроводной асимметричной системе применяется метод трех приборов.
Рассмотрим методы измерения мощности, что дает также представление и о методах измерения энергии.
Метод одного прибора. Если трехфазная система симметрична, а фазы нагрузки соединены звездой с доступной нулевой точкой, то однофазным ваттметром измеряют мощность одной фазы. Для получения мощности всей системы показания ваттметра утраивают. Можно также измерить мощность при соединении фаз нагрузки треугольником, но при условии, что последовательную обмотку ваттметра можно включить в одну из фаз нагрузки.
Если нагрузка включена треугольником или звездой с недоступной нулевой точкой, то применяют включение ваттметра с искусственной нулевой точкой, которая создается с помощью двух дополнительных резисторов с активным сопротивлением. Для получения мощности всей системы показание ваттметра нужно утроить. То же самое будет и при соединении нагрузки звездой.
Для измерения энергии такая схема не применяется из-за большой индуктивности параллельной цепи счетчика.
Метод двух приборов. Этот метод применяют в асимметричных трехпроводных цепях трехфазного тока. Возможны три варианта схемы включения двух приборов. Анализ работы ваттметров по этим схемам показывает, что в зависимости от характера нагрузки фаз знак показаний каждого из ваттметров может меняться. Активная мощность трехфазной системы в этом случае должна определяться как алгебраическая сумма показаний обоих ваттметров.
Метод трех приборов. В том случае, когда несимметричная нагрузка включается звездой с нулевым проводом, т. е. когда имеется асимметричная трехфазная четырехпроводная система, применяют три ваттметра. При таком включении каждый из ваттметров измеряет мощность одной фазы. Полная мощность системы определяется как арифметическая сумма показаний ваттметров.
В промышленных условиях применяют двух- и трехфазные ваттметры и счетчики, которые представляют собой сочетание в одном приборе двух или трех однофазных измерительных механизма, имеющих общую подвижную часть, на которую действует суммарный вращающий момент всех элементов.
Измерение реактивной мощности и энергии в трехфазной цепи. Реактивную мощность трехфазной сети можно представить как сумму реактивных мощностей отдельных фаз. Измерить реактивную мощность (энергию) трехфазной сети можно различными способами: при помощи обычных ваттметров (счетчиков), включаемых по специальным схемам, и при помощи реактивных ваттметров (счетчиков). При полной симметрии трехфазной сети реактивную мощность можно измерить одним ваттметром. Для определения реактивной мощности всей системы показания ваттметра умножают на з. Схема с одним ваттметром даже при незначительной асимметрии системы дает большие погрешности. Лучшие результаты получают при измерении реактивной мощности двумя ваттметрами.
При неравномерной нагрузке фаз, но симметричной системе напряжений (частичная асимметрия) реактивная мощность трехфазной сети может быть измерена двумя одинаковыми ваттметрами активной мощности с искусственной нулевой точкой. Для создания искусственной нулевой точки используют резистор, сопротивление которого равно сопротивлению параллельной цепи ваттметра. В случае равномерной нагрузки фаз, для получения реактивной мощности трехфазной сети сумму показаний ваттметров умножают на 3.
На основе этого метода выпускают реактивные счетчики, пригодные как для трехпроводных, так и четырехпроводных цепей трехфазного тока.
При косвенных методах измерения электрической энергии, например при поверке счетчиков электрической энергии, используют электродинамические ваттметры и секундомеры.