- •Предисловие
- •Токсические вещества в воздухе, воде и пищевых продуктах
- •Токсические вещества в воздухе
- •Токсические вещества в воде
- •Токсические вещества в продуктах питания
- •Предмет и задачи токсикологии
- •Основные параметры токсикометрии
- •Классификация ядов
- •Токсикологическая классификация ядов. Разделение основано в зависимости от характера токсического действия яда на организм.
- •Классификация ядов по «избирательной токсичности»
- •Классификация отравлений как заболеваний. Различают:
- •Острые и хронические отравления. Пороговое токсическое действие Острые отравления
- •Хронические отравления
- •Пороговые концентрации и дозы при хроническом воздействии токсических веществ
- •Хронические интоксикации при интермиттирующих воздействиях вредных веществ
- •Специфическое и неспецифическое действие химических веществ в развитии токсического эффекта
- •Кумуляция и привыкание
- •Материальная и функциональная кумуляция
- •Количественная оценка кумулятивных свойств промышленных ядов
- •Адаптации и привыкание
- •Привыкание к ядам и фазы хронической интоксикации
- •Механизмы привыкания к ядам
- •Привыкание при комбинированном и комплексном воздействии
- •Привыкание к ядам специфического действия
- •О механизмах толерантности
- •Гомеостаз и химическая патология
- •О теории рецепторов как месте реализации токсического действия яда
- •Основные стадии взаимодействиЯ Яда с биологиЧеским объектом
- •Проникновение токсических веществ через дыхательные пути
- •Всасывание токсических веществ из желудочно-кишечного тракта
- •Всасывание токсических веществ через кожу
- •Транспорт токсических веществ
- •Распределение и депонирование токсических веществ в организме
- •Превращение токсических веществ в организме
- •Выведение токсических веществ из организма
- •О соотношении между концентрацией яда, временем его воздействия и возникающим эффектом
- •Влияние факторов внешней среды на действие ядов
- •Связь строения химических веществ с их биологическим (токсическим) действием
- •Связь токсичности химических веществ с их молекулярной массой, размерами молекул и их структурной сложностью
- •Зависимость токсического эффекта от входящих в состав вещества химических группировок и атомов
- •Зависимость токсического эффекта от пола
- •Возраст и токсический эффект
- •Тиоловые яды, механизм действия
- •Распространенные яды, блокирующие сульфгидрильные группы биомолекул
- •Химизм действия тиоловых ядов
- •Строение и функции печени Строение печени
- •Функции печени
- •Механизм действия алкоголь- содержащих веществ на организм и пути биотрансформации этанола
- •Алкоголь в организме: пути биотрансформации
- •Метиловый спирт как высокотоксичный яд
- •Кровеносная система: состав и функции крови у млекопитающих
- •Компоненты плазмы крови и их функции
- •Гемолитические яды, механизмы гемолиза
- •Нервная система млекопитающих: нейроны, синапсы, медиаторы
- •Нейроны
- •Синапсы
- •Медиаторы нервной системы
- •Классификация пестицидов и механизм действия фосфорорганических соединений
- •Яды табачного дыма
- •Общие вопросы токсикологии радиоактивных веществ Естественные и искусственные радионуклиды
- •Поступление радиоактивных веществ в организм
- •Распределение радионуклидов в организме
- •Сочетанное (комбинированное) радиационное воздействие
- •Отдаленные последствия сочетанного действия факторов лучевой и нелучевой природы
- •Биологическое действие радиоактивных веществ
- •Радиотоксины
- •Обезвреживание токсических веществ в окружающей среде с помощью микроорганизмов-Деструкторов
- •Гигиеническая регламентация и стандартизация
- •Значение экспериментальных исследований для определения пдк
- •Методы установления пдк вредных веществ в воздухе рабочей зоны
- •Литература
- •Содержание
Зависимость токсического эффекта от входящих в состав вещества химических группировок и атомов
Существенные, подчас резкие сдвиги токсичности ряда химических соединений наблюдаются при введении в их молекулы галоидов. Например, атом хлора или фтора в молекуле углеводорода усиливает ее химическую активность, увеличивает растворимость вещества в воде, его способность окислять многие биомолекулы посредством дегидрирования. При этом, как правило, токсичность вещества усиливается.
Известно, что элементарные галоиды (как и их ионы) характеризуются определенной степенью токсичности, причем наиболее токсичен фтор, а наименее - йод, т.е. токсичность обратно пропорциональна атомной массе галоида. Немаловажное значение имеют величина электрического заряда и размеры атома галоида. В частности, сильно электроотрицательный атом фтора отличается высокой подвижностью и потому более реакционноспособен. Помимо подвижности, важную роль играет местоположение атома галоида в молекуле. Если сравнивать циклические соединения, в которых атом галоида “замурован” и потому более химически инертен с галоидсодержащими веществами с открытой цепью, то последним, как правило, свойственна большая биологическая активность. При таком сопоставлении необходимо учитывать количество атомов галоида. В большинстве случаев, чем их в молекуле больше, тем выше активность вещества, но при этом имеет значение местоположение атомов галоида. Например, хлористый этилиден (СН3-СН-Сl2 ) проявляет наркотическое действие намного слабее своего изомера с симметричным расположением атомов хлора - хлористого этилена (Сl-CH2-CH2-Cl).
Вообще включение атомов галоидов в молекулы углеводородов и спиртов жирного ряда приводит к резкому возрастанию токсичности последних. Так, биологически малоактивный метан при хлорировании превращается в токсичный хлороформ (СНСl3) и в еще более токсичный четыреххлористый углерод (ССl4), а этиловый спирт при включении в его молекулу трех атомов брома превращается в нарколан (С2Н2Вr3ОН) - вещество, в несколько десятков раз более ядовитое этилового спирта.
Одной из главных молекулярных характеристик, определяющих особенности строения и разнообразие свойств химических соединений, является энергия химических связей. Было показано, что токсичность углеводородов с введением в молекулу галоидов возрастает от фтора к йоду, и это коррелирует с показателями энергии разрыва соответствующих химических связей. Так, если данная молекулярная константа в органических молекулах для связи С-Н составляет 358 кДж/моль, то для C-J - 180, для С-Br - 239, для С-Сl - 293 и для С-F - 435 кДж/моль.
В числе сильных синтетических ядов - производных фторкарбоновых кислот - есть слаботоксичные и практически безопасные соединения. Исследуя зависимость между химической структурой и физиологическими свойствами эфиров фторкарбоновой кислоты типа F-(CH2)n-COO-C2H5, Б.Сондерс и М.Сартори показали, что эти соединения токсичны только в том случае, когда n - нечетное число, тогда как при четном n они практически не токсичны. Наблюдаемое изменение биологической активности производных фторкарбоновых кислот хорошо объясняется исходя из теории ...-окисления жирных кислот в организме. Оказалось, что если n - нечетное число, то в организме образуется высокотоксичная фторуксусная кислота, а при четном значении процесс окисления идет до нетоксичной ...-фторпропионовой кислоты. Причем, если увеличить число n, т.е. количество метиленовых групп в углеводородной цепочке, то токсичность постепенно возрастает до n=5, а затем уменьшается.
В противоположность элементарным галоидам элементарная сера не обладает биологической активностью. Но если атом серы ввести, например, в молекулу углеводорода, т.е. превратить его в меркаптосоединение, то оно станет токсичным. Так, сила наркотического действия серопроизводного гексана в 25 раз выше исходного вещества, а серопроизводного октана - в 350 раз. Существует мнение, что такого рода модификация молекул органических веществ облегчает взаимодействие и увеличивает прочность их связи с белковой частью клеточных мембран, что, по современным представлениям, лежит в основе наркотического действия этого класса соединений.
Существенную роль в формировании биологической активности серосоединения играет валентность входящего в него атома серы. Увеличение электроположительной валентности серы от 2 до 6 чаще всего снижает токсичность вещества. При этом параллельно снижается растворимость вещества в липидах и, значит, способность проникать вглубь клетки. Но когда двухвалентная сера входит в состав тиоловых групп, то вещества, их содержащие, приобретают свойства противоядия и радиозащитных средств (цистамин, ...-аминоэтилизотиуронат и др.).
Что касается неорганических соединений, то их токсичность зависит как от порядковых номеров соответствующих химических элементов (катионов) в периодической системе, так и от химического состава анионов. Так, практически нетоксичные катионы (Na+, K+, Cs+, Sr2+) характеризуются сильным отрицательным окислительно-восстановительным потенциалом, тогда как наиболее токсичными являются катионы металлов с положительным нормальным потенциалом (Сu2+, Hg2+, Be2+, Cd2+). Среди анионов наибольшей токсичностью обладают NO2-, F-, AsO43-, CN-, AsO2-, но в некоторых солях (ртути, свинца и др.) анионы не играют существенной роли для степени токсичности. Изучение токсичности анионов, проведенное в опытах на мышах посредством внутрибрюшинного введения натриевых солей, показало, что, например, показатель DL50 для AsO2- в 2300 раз меньше, чем для SO42-, а для CN- в 830 раз меньше, чем для NO3-.
Другим физико-химическим фактором, определяющим токсичность неорганических соединений, является растворимость их в воде и в липидах: чем выше растворимость, тем интенсивнее резорбция вещества в пищеварительном тракте. И наоборот, вещества, не обладающие такими свойствами (ВаSO4, Bi(NO3)2), при пероральном приеме выводятся из организма в неизменном виде. В этой связи, с целью скорейшего обеспечения желаемого эффекта многих лекарственных препаратов, они применяются в виде соединений с соляной, серной, азотной, уксусной кислотами, что обеспечивает хорошую их растворимость.
Необходимым условием токсичности неорганических соединений является также их способность к ионизации, поскольку токсическое действие по отношению к выполняющей роль мишени биоструктуре определяется катионами и анионами.
Очень часто биологическая активность (токсичность) вещества определяется наличием в его молекулах тех или иных функциональных групп (радикалов). Например, уже простое введение нитрогрупп (-NO2) в органическое соединение обычно придает ему токсические свойства.
Оксидная (=N-OH) группа, введенная в молекулу органического соединения, делает это соединение способным вызывать появление на коже волдырей и одновременно - раздражение слизистых оболочек и слезотечение. Это имеет место, к примеру, в случае фосгеноксима (ССl2N-OH).
Таким образом, характерные свойства токсичных веществ определяются очень часто химическими особенностями отдельных группировок и атомов. В то же время основные в структурном отношении части молекул могут оказаться биологически (токсически) инертными.
ЗАВИСИМОСТЬ РАЗВИТИЯ ТОКСИЧЕСКОГО
ЭФФЕКТА ОТ БИОЛОГИЧЕСКИХ
ОСОБЕННОСТЕЙ ОРГАНИЗМА
Токсический эффект формируется в результате взаимодействия трех факторов - непосредственно организма, яда и окружающей внешней среды. Существует определенная зависимость токсического эффекта от некоторых биологических факторов.
Видовые различия организмов
по чувствительности к ядам
В настоящее время общепризнанным является факт о различной видовой чувствительности животных к ядам. Например, при введении ацетофоса в DL50 активность фермента холинэстеразы через один час после введения составляет: у человека - 5,0 ед., у кролика - 2,7 ед., у морской свинки - 6,4 ед., у крысы - 10,0 ед., у мыши - 24,0 ед.
Что же лежит в основе видовой чувствительности животных к разным ядам?
Прежде всего видовое различие животных по отношению к ядам зависит от обмена веществ. Причем особо важное значение имеют не количественные стороны обмена веществ, а качественные отличия реакций различных биохимических структур в ответ на воздействие яда. Например 2-х часовое воздействие бензола на крыс и мышей приводит к различной степени инактивации фермента каталазы, хотя исходные уровни активности близки: 17,6 ед. и 20 ед. соответственно. Так, за 2 часа у мыши активность фермента снижается на 0,1 ед., а у крыс - на 7,4 ед. Этот пример является иллюстрацией того, что количественное и качественное проявление токсического эффекта у животных различных видов существенным образом зависит от особенностей обмена веществ.
Проявление токсического эффекта зависит также от степени сложности и дифференцированности ЦНС, уровня развития регуляторных механизмов физиологических функций, продолжительности жизни, размера животных. Хорошо коррелирует ряд показателей проявления токсического эффекта с весом тела животных. Поэтому вес животных может являться одним из тех факторов, с помощью которого можно производить предварительную оценку видовой чувствительности животных к яду.
