
- •1.Физика в системе естественных наук. Физическая картина мира.
- •2. Взаимоотношения теории и эксперимента в физике.
- •3. Элементарные частицы, их классификация. Резонансы.
- •8.Заряды (электрический, барионный, лептонный), спин, странность, очарование, красота.
- •9. Барионы и мезоны.
- •10. Нейтрино.
- •11. Истинно нейтральные частицы.
- •12. Кварки. Дробные значения электрического и барионного зарядов.
- •14. Заряд и масса ядра. Ядерные силы. Природа ядерных сил.
- •15. Дефект массы и энергия связи.
- •18. Гипотеза де Бройля.
- •19. Элементарные понятия квантовой механики. (см. Тетр. 30стр)
- •20. Волновая функция. Её статический смысл и свойства. (см. Тетр. 31стр.)
- •21. Волновая функция, основные свойства и физический смысл. (см. Тетр. 31стр.)
- •23. Корпускулярно-волновой дуализм.
- •28.Квантовый осциллятор. Энергетические уровни. Энергия нулевых колебаний.
- •29. Соотношение неопределенностей Гейзенберга
- •30. Модель атома Резерфорда – Бора
- •31.Принцип неразличимости тождественных частиц в квантовой механике. Симметричные и антисимметричные состояния. Фермионы и бозоны. Принцип Паули.
- •32. Принцип Паули. Электромагнитные оболочки и под оболочки. (см. Вопрос. 31)
- •33. Молекулярные системы. Межмолекулярные взаимодействия.
- •34.Порядок и беспорядок. Симметрия. Взаимодействие, состояние.
- •35. Энтропия. «Тепловая смерть» Вселенной.
- •36. Динамические и статические закономерности в природе. Детерминизм и вероятность
- •37. Агрегатные состояния. Жидкое, аморфное и кристаллическое состояние вещества.
- •38. Жидкие кристаллы, полимеры.
- •39. Закон Всемирного тяготения. Механическая картина мира.
- •40. Специальная теория относительности. Преобразования Лоренца.
- •41. Пространство и время. Интервал. Парадокс близнецов
- •42. Теория относительности и физическая картина мира.
- •43. Элементарные Элементарные представления о строение и эволюции Вселенной. Большойвзрыв, красное смещение и реликтовое излучение.
- •44. Симметрия и асимметрия в природе. Симметрия материального мира и законы сохранения.
- •45. Современная физическая картина мира. Пространственно-временные масштабы физических явлений.
- •46. Геометрическая и волновая оптика.
- •47. Электромагнитная картина мира.
- •48. Электродинамика и специальная теория относительности
46. Геометрическая и волновая оптика.
Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.
Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.
В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.
Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.
Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.
Волновая о́птика — раздел оптики, который описывает распространение света с учётом его волновой природы. Явления волновой оптики — интерференция, дифракция, поляризация и т. п.
47. Электромагнитная картина мира.
Главная исходная идея ЭМКМ – это естественнонаучный материализм, а её ядро – теория электромагнитного поля. ЭМКМ базировалась на следующих идеях:
·непрерывность материи (континуальность),
·материальность электромагнитного поля,
·неразрывность материи и движения,
·связь пространства и времени как между собой, так и с движущейся материей.
Основными принципами ЭМКМ являются принцип относительности Эйнштейна, близкодействие, постоянство и предельность скорости света, эквивалентность инертной и гравитационной масс, причинность. (Какого-либо нового понимания причинности по сравнению с МКМ не произошло. Главными считались причинно-следственные связи и динамические законы, их выражающие.) Большое значение имело установление взаимосвязи массы и энергии (E = mc2). Масса стала не только мерой инертности и гравитации, но и мерой содержания энергии. В результате два закона сохранения – массы и энергии – были объединены в один общий закон сохранения массы и энергии.
Дальнейшее развитие физики показало, что ЭМКМ имеет ограниченный характер. Главная трудность здесь заключалась в том, что континуальное понимание материи не согласовывалось с опытными фактами, подтверждающими дискретность многих её свойств – заряда, излучения, действия. Не удавалось объяснить соотношения между полем и зарядом, устойчивость атомов, их спектры, явление фотоэффекта, излучение абсолютно черного тела. Все это свидетельствовало об относительном характере ЭМКМ и необходимости замены её новой картиной мира.
Вскоре на смену ЭМКМ пришла новая – квантово-полевая картина Мира, объединившая дискретность МКМ и непрерывность ЭМКМ.