
- •1.Предназначение системы сбора и подготовки скважинной продукции
- •2.Основные элементы системы сбора (схема).
- •3.Схема самотечной двухтрубной системы сбора нефти.
- •4.Схема герметизированной однотрубной, высоконапорной системы сбора.
- •5.Мероприятия по сбору и транспорту на горной местности.
- •6.Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вблизи от берега.
- •7.Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.
- •8.Принципиальная схема Спутника-а.
- •9.Принципиальная схема Спутника-в.
- •10.Классификация трубопроводов.
- •11.Определение потерь напора на трение для всех режимов.
- •16.Состав и структура солеотложений в системе сбора.
- •17.Методы удаления солеотложений в системе сбора.
- •18.Состав и классификация аспо в системе сбора.
- •19.Основные факторы образования аспо в системе сбора.
- •20.Метода предотвращения и борьбы с аспо в системе сбора.
- •21.Виды коррозии в системе сбора.
- •22.Факторы коррозионного воздействия на трубопровод.
- •1. Температура и рН воды
- •Минерализация воды
- •23.Защита трубопроводов от внутренней коррозии.
- •24.Защита трубопроводов от внешней коррозии.
- •25.Схема предварительного разгазирования нефти. Понятие сепарации и ступени сепарации.
- •26.Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.
- •27.Устройства гасителей пульсации.
- •28.Назначение сепараторов.
- •29.Классификация сепараторов.
- •30.Типовые секции сепаратора.
- •31.Определение эффективности работы сепаратора.
- •32.Конструкция вертикального сепаратора.
- •33.Конструкция горизонтального сепаратора.
- •34.Конструкция горизонтального сепаратора с упог.
- •35.Конструкция гидроциклонного сепаратора.
- •36.Конструкция совмещенной установки разделения скважиной продукции.
- •37.Расчет количества газа, выделившегося по ступеням сепарации.
- •38.Допущения принятые при расчете сепараторов.
- •39.Схема глобул воды в нефти. Типы эмульсий.
- •40. Классификация эмульсий в зависимости от плотности сред и содержания п, с и а.
- •41.Необходимость обезвоживания нефти на нефтяных месторождениях.
- •42.Факторы, влияющие на образование эмульсий.
- •43.Предотвращение образования стойких эмульсий.
- •44.Основные методы разрушение эмульсий.
- •45.Применение пав в качестве деэмульгаторов.
- •46.Внутритрубная деэмульсация нефти. Схема.
- •47. Принципиальная схема гравитационного осаждения.
- •54.Схемы подогревателей нефти и печей.
- •55Принципиальная схема осаждения под действием переменного электрического поля
- •57 Электродегидраторы
- •57.Электродегидраторы
- •58.Схемы совмещенных аппаратов
- •59.Схема расположения оборудования на наземном вертикальном цилиндрическом резервуаре
- •60.Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •61. Огневой предохранитель. Устройство и принцип действия.
- •62 Методы снижения потерь углеводородов при испарении нефти в резервеарах.
- •63. Схема газоуловительной системы с газосборником
- •64.Назначение установок подготовки воды упсв
- •65 Открытая схема установки очистки сточных вод
- •66 Установка очистки сточных вод закрытого типа
- •67 Схема установки подготовки воды и нефти, применяемая при большом обводнении продукции скважины(больше 50 процентов)
- •68 Схема резервуара флотатора
- •6 9 Схемы водозаборов
- •70 Схема улавливания легких фракций углеводородов
- •71 Стабилизация нефти.
- •72 Абсорбционная осушка газа
- •73 Адсорбционная осушка газа
- •74 Низкотемпературная сепарация
- •75 Требования, предъявляемые к нефти.
- •76 Требования, предъявляемые к воде в ппд.
47. Принципиальная схема гравитационного осаждения.
Рассмотрим на примере:Горизонтальный сепаратор. На рис. приведены общий вид и разрез горизонтального сепаратора, в котором частицы жидкости оседают под действием как гравитационных, так и инерционных сил. Этот сепаратор работает следующим образом.
Рис.. Общий вид и разрез горизонтального сепаратора: 1 – ввод газонефтяной смеси; 2 – диспергатор; 3 – наклонные плоскости; 4 – жалюзийная насадка-каплеуловитель; 5 – перегородка для выравнивания потока газа; 6 – выход газа; 7 – люк; 8 – регулятор уровня; 9 – поплавковый уровнедержатель; 10 – сброс грязи; 11 – перегородка для предотвращения прорыва газа; 12 – сливная трубка
Нефтегазовая смесь, подаваемая в патрубок 1, вначале попадает в диспергатор газа 2, где происходит дробление (диспергирование) нефтегазовой смеси. Диспергирование нефти приводит к существенному увеличению поверхности контакта нефть-газ, в результате чего происходит интенсивное выделение газа из нефти. Однако глубокое отделение газа от нефти получается в том случае, когда выделившийся в трубопроводе газ отделяется от нефти до подхода к сепаратору. После диспергатора из газа под действием гравитационных сил значительная часть капельной нефти оседает на наклонные плоскости 3, а незначительная часть ее в виде мельчайших капелек уносится основным потоком газа. Для изменения структуры потока наклонные плоскости следует выполнять с уступами (порогами), способствующими выделению газа из жидкости.
О
сновной
поток газа вместе с мельчайшими частицами
нефти, не успевшими осесть под действием
силы тяжести, встречает на своем пути
жалюзийную насадку 4, в которой происходят
"захват" (прилипание) капелек
жидкости и дополнительное отделение
их от газа; при этом образуется пленка,
стекающая в поддон, из которого по трубе
12 она попадает под уровень жидкости, в
сепараторе.
На рис.3.7. в верхней части сепаратора показана в увеличенном размере капелька К и действующие на нее силы, а в нижней части сепаратора – увеличенный пузырек газа П и также силы, действующие на него.
Осаждение частиц жидкости в гравитационном сепараторе происходит в основном по двум причинам.
1- Резкое снижение скорости газового потока.
2- разность плотностей газовой и жидкой фазы
Для эффективной сепарации необходимо, чтобы скорость движения газового потока была меньше скорости осаждения
ωг<ωчастиц
При расчете принимаются следующие допущения
1- Частица жидкости имеет форму шара на который действуют две силы
R
mg
2- На движение частицы не оказывает влияние другие частицы
3-Сила сопротивления уравновешивает силу тяжести и частица движется с постоянной скоростью осаждения
Режим движения частицы
1- Re < 2 –Ламинарный режим осаждения Сам эффективный режим
ωч= |
dч2(ρч-ρс)g |
18μc |
48.Установка
термической подготовки нефти.
сырьевой резервуар
насос
теплообменник
печь
отстойник
резервуар для товарной нефти
1’- сырая нефть
2’- товарная нефть
3’- дренажная вода
4’- деэмульгатор
49.Установка
комплексной подготовки нефти
1’- сырая нефть
2’- товарная нефть
3’- дренажная вода
4’- несконденсированные газы
5’- широкая фракция легких углеводородов
насос
теплообменник
отстойник
электродегидратор
стабилизационная, рентификационная колонна
кипитильник
холодильник, конденсатор
емкость для сбора ШФЛУ
5- необходима для отделения легких частично бензиновых фракций
50
Принципиальная технологическая схема
установки по обезвоживанию нефти для
небольших и средних по величине нефтяных
месторождений
– объем
добычи нефти до 2-3 млн. т/год
1’- сырая нефть
2’- товарная нефть
3’- газ высокого давления
4’- дренажная вода
5’- газ низкого давления
6’- деэмульгатор
сепаратор 1-й ступени
трехфазный сепаратор или 2-й ступени
аппарат типа Хитер тритер 3-х фазный с подогревом эмульсии
концевая сепарационная установка
1-я ступень P=0,4-0,6 МПа
2-я ступень до 0,4 МПа
На 5’ при атмосферном давлении
51 Принципиальная технологическая схема установки по обезвоживанию нефти для крупных нефтяных месторождений или для группы нефтяных месторождений с объемом добычи нефти свыше 5-6 млн. т/год
сепаратор 1-й ступени
2-й ступени
Печь
3-х фазный сепаратор
КСУ
1’- сырая нефть
2’- товарная нефть
3’- газ высокого давления
4’- дренажная вода
5’- газ низкого давления
6’- деэмульгатор
52
Принципиальные схемы отстойных аппаратов
различного типа.
1’- нефтяная эмульсия
2’- нефть
3’- вода
коллектор для подачи нефтяной эмульсии
коллектор для сбора нефти
трубный каплеуловитель
перегородка с перетоком
перфорированная перегородка
53 Схема ОГ-200
Отстойник
с распределительным коллектором типа
ОГ-200
1-корпус; 2- перфорированная труба для подачи воды из правой секции в левую; 3- распределительный коллектор с отверстиями для подачи разрушенной эмульсии; 4-отводы с отверстиями; 5- перегородка; 6-исполнительный элемент;7- межфазный уровнемер (поплавок); 8-люк-лаз;9-нефтяная линия;10-предохранительный клапан;11-перфорированный сборный коллектор для нефти;12-стояк для подачи разрушенной эмульсии;13-эмульсионный слой;14-водяная «подушка»
В остойник поступает как правило разрушенная нефтяная эмульсия, но не отдельными потоками нефти и воды, а виде их смеси. Указанная смесь по стояку 12 поступает в распределительный коллектор 3 и в отводы с отверстиями, из которых она должна выходить равномерными струями по всему сечению отстойника.
При выходе струй из распределительного коллектора и отводов режим движения их должен быть ламинарным, чтобы предотвратить возможное образование стойких эмульсий в объеме самого отстойника.
При выходе смеси нефти с водой из распределительного коллектора и отводов происходит одъем капель неяти к верхней образующей отстойника, а вода оседает в дренаж и по перфорированной трубе 2 перетекает в секцию отстойного аппарата. С помощью межфазного попловка 7 и исполнительного механизма 6 вода сбрасывается за пределы отстойника.
При подъеме капелек нефти через водяную «подушку» 14 на границе раздела фаз образуется, как правило, эмульсионный слой 13, который постепенно растет по высоте и трудно поддается разрушению при воздействии на него даже ПАВ. Увеличение по высоте эмульсионного слоя часто является основной причиной нечеткой работы межфазного поплавкового механизма и повышенного попадания капелек нефти в сточную воду.
Скопившаяся в верхней части отстойника чистая нефть по перфорированному сборному коллектору 11 и нефтяной линии 9 выводится за пределы отстойника в концевой сепаратор. Описанный отстойник широко применяется на промыслах, в 1977 г. Был подвергнут исследованиям на пропускную способность бригадой сотрудников из ВНИИСПТнефть и других организаций.