
- •1.Предназначение системы сбора и подготовки скважинной продукции
- •2.Основные элементы системы сбора (схема).
- •3.Схема самотечной двухтрубной системы сбора нефти.
- •4.Схема герметизированной однотрубной, высоконапорной системы сбора.
- •5.Мероприятия по сбору и транспорту на горной местности.
- •6.Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вблизи от берега.
- •7.Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.
- •8.Принципиальная схема Спутника-а.
- •9.Принципиальная схема Спутника-в.
- •10.Классификация трубопроводов.
- •11.Определение потерь напора на трение для всех режимов.
- •16.Состав и структура солеотложений в системе сбора.
- •17.Методы удаления солеотложений в системе сбора.
- •18.Состав и классификация аспо в системе сбора.
- •19.Основные факторы образования аспо в системе сбора.
- •20.Метода предотвращения и борьбы с аспо в системе сбора.
- •21.Виды коррозии в системе сбора.
- •22.Факторы коррозионного воздействия на трубопровод.
- •1. Температура и рН воды
- •Минерализация воды
- •23.Защита трубопроводов от внутренней коррозии.
- •24.Защита трубопроводов от внешней коррозии.
- •25.Схема предварительного разгазирования нефти. Понятие сепарации и ступени сепарации.
- •26.Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.
- •27.Устройства гасителей пульсации.
- •28.Назначение сепараторов.
- •29.Классификация сепараторов.
- •30.Типовые секции сепаратора.
- •31.Определение эффективности работы сепаратора.
- •32.Конструкция вертикального сепаратора.
- •33.Конструкция горизонтального сепаратора.
- •34.Конструкция горизонтального сепаратора с упог.
- •35.Конструкция гидроциклонного сепаратора.
- •36.Конструкция совмещенной установки разделения скважиной продукции.
- •37.Расчет количества газа, выделившегося по ступеням сепарации.
- •38.Допущения принятые при расчете сепараторов.
- •39.Схема глобул воды в нефти. Типы эмульсий.
- •40. Классификация эмульсий в зависимости от плотности сред и содержания п, с и а.
- •41.Необходимость обезвоживания нефти на нефтяных месторождениях.
- •42.Факторы, влияющие на образование эмульсий.
- •43.Предотвращение образования стойких эмульсий.
- •44.Основные методы разрушение эмульсий.
- •45.Применение пав в качестве деэмульгаторов.
- •46.Внутритрубная деэмульсация нефти. Схема.
- •47. Принципиальная схема гравитационного осаждения.
- •54.Схемы подогревателей нефти и печей.
- •55Принципиальная схема осаждения под действием переменного электрического поля
- •57 Электродегидраторы
- •57.Электродегидраторы
- •58.Схемы совмещенных аппаратов
- •59.Схема расположения оборудования на наземном вертикальном цилиндрическом резервуаре
- •60.Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •61. Огневой предохранитель. Устройство и принцип действия.
- •62 Методы снижения потерь углеводородов при испарении нефти в резервеарах.
- •63. Схема газоуловительной системы с газосборником
- •64.Назначение установок подготовки воды упсв
- •65 Открытая схема установки очистки сточных вод
- •66 Установка очистки сточных вод закрытого типа
- •67 Схема установки подготовки воды и нефти, применяемая при большом обводнении продукции скважины(больше 50 процентов)
- •68 Схема резервуара флотатора
- •6 9 Схемы водозаборов
- •70 Схема улавливания легких фракций углеводородов
- •71 Стабилизация нефти.
- •72 Абсорбционная осушка газа
- •73 Адсорбционная осушка газа
- •74 Низкотемпературная сепарация
- •75 Требования, предъявляемые к нефти.
- •76 Требования, предъявляемые к воде в ппд.
38.Допущения принятые при расчете сепараторов.
Скорость осаждения при ламинарном режиме осаждения.
Осаждение частиц ж-ти в гравитационном сепараторе происходит по 2-м причинам:
А) резкое снижение скорости газового потока.
Б) разность плотности газовой и жидкой фазы.
Для эффективной сепарации необходимо чтобы скорость движения газового потока была меньше скорости осаждения.
При расчете принимаются следующие допущения:
Частица жидкости имеет форму шара
На движение частицы не оказывают влияние др. частицы.
Сила сопротивления уравновешивает силу тяжести, и частица движется с постоянной скоростью осаждения.
Различают 3 режима движения частицы:
Ламинарный режим осаждения Re<2
Переходный 2≤Re<500
Турбулентный Re≥500
39.Схема глобул воды в нефти. Типы эмульсий.
1 – капелька воды.
2,3 –эмульгаторы
4 –нефть
δ – толщина оболочки.
В процессе добычи при совместном движении нефти и воды по стволу скважины и нефтесборным трубопроводам происходит их совместное перемешивание, в результате чего одна жидкость распределяется виде капель-глобул. При смешивании нефти с водой образуются эмульсии 2-х типов:
Прямого (нефть в воде)
Обратного (вода в нефти)
Почти все эмульсии, встречающиеся при добыче нефти принадлежат к типу в/н.
Для образования стойких эмульсий необходимо наличие природных эмульгаторов, таких как асфальтены, смолы, мех. примеси, нефтерастворимые органические мех. примеси.
40. Классификация эмульсий в зависимости от плотности сред и содержания п, с и а.
Разность плотностей м/у водой и нефтью
Δρ=200-250 кг/м3 труднорасслаемые
Δρ=250-300 кг/м3 расслаемые
Δρ=300-350 кг/м3 легко расслаемые
Отношение суммарного содержания асфальтенов, смол, парафинов
0,950-1,4 - смешанные
2,76-3,89 - смолистые
4,78-7,79 - высоко смолистые
41.Необходимость обезвоживания нефти на нефтяных месторождениях.
Образование стойких эмульсий снижает межремонтный период (МРП) работы скважин из-за обрывов штанг в штанговых скважинных насосных установках (ШСНУ), пробоев электрической части установок электропогружного центробежного насоса (УЭЦН) вследствие перегрузок погружного электродвигателя (ПЭД). Рост давления жидкости в системах сбора нефти и газа влечет за собой порывы коллекторов. Затрудняются сепарация газа и предварительный сброс воды на УПС. Однако наибольший рост энерго- и металлоемкости связан с необходимостью разрушения стойких эмульсий и имеет место в системах подготовки нефти.
Как было сказано выше, вода образует с нефтью эмульсии различной степени стойкости, и со временем стойкость эмульсий повышается. Это является одной из причин того, что добываемую нефть необходимо обезвоживать как можно раньше с момента образования эмульсии, не допуская ее старения. Наиболее целесообразно проводить обезвоживание нефти на месторождениях
Второй, наиболее важной причиной обезвоживания нефти в районах ее добычи является высокая стоимость транспорта пластовой воды. Транспорт обводненной нефти удорожается не только в результате перекачки дополнительных объемов содержащейся в нефти пластовой воды, но и вследствие того, что вязкость эмульсии типа В/Н выше, чем чистой нефти. Так, вязкость безводной нефти Ромашкинского месторождения при 15С в три раза ниже, чем ее эмульсии, содержащей 20% воды. Вязкость эмульсии на данном месторождении, содержащей 5 и 20% воды, составляет соответственно 17 и 33,3 сСт, т.е. возрастает в 2 раза. При увеличении содержания воды в нефти на 1% транспортные расходы возрастают в среднем на 3–5% при каждой перекачке.
Вместе с водой при обезвоживании из нефти удаляются соли, растворенные в воде, и механические примеси, которые являются причиной коррозии и загрязнения трубопроводов и аппаратов.
Обезвоживание нефти на месторождениях – лишь первый этап ее подготовки к переработке, так как присутствие в нефти воды, солей и механических примесей в тех количествах, которые остаются в нефти после обезвоживания на месторождении, отрицательно сказывается на процессах переработки нефти и на качестве получаемых нефтепродуктов. Так, например, для большинства нефтей Урало-Поволжского региона содержание хлористых солей при количестве остаточной пластовой воды в нефти 0,5% составляет 1000–1200 мг/л, а в нефти, поступающей на переработку, содержание солей не должно превышать 5–10 мг/л.
Более глубокая очистка нефти от пластовой воды, солей и механических примесей осуществляется в процессе обессоливания. С этой целью обезвоженную нефть интенсивно перемешивают с пресной водой, а образовавшуюся эмульсию разрушают