
- •Вопрос 1 Явление переноса в газах: диффузия, теплопроводность, вязкость
- •Вопрос 2 Теория теплоёмкости Эйнштейна
- •Недостатки теории
- •Вопрос 1Пространственная решетка. Элементарная и примитивная решетки.
- •Вопрос 2 Уравнение Аррениуса
- •Вопрос 1 Природа пластичности твердых тел
- •Вопрос 2 Учет вклада свободных электронов в теплоемкость.
- •Вырожденный газ
- •Вопрос 1 Распределение электронов по энергетическим зонам в металлах, полупроводниках и диэлектриках.
- •Вопрос 2 Понятие длинны и времени выравнивания концентрации в газах и времени выравнивания температуры.
- •Вопрос 1Пространственные группы и кристаллические классы
- •Вопрос 2 Перемещение атомов в твёрдых телах на большие расстояния.
- •Вопрос 1 Дефекты кристаллической решётки.
- •Вопрос 2 Теория теплоёмкости Дебая.
- •Вопрос 1 Общее уравнение переноса
- •Вопрос 2 Решетка с базисом на примере кубической объемно центрированной и кубической гранецентрированной решеток. Простая, объемно- и гранецентрированная кубические решетки
- •Вопрос 1 Квантовая теория электропроводности металлов
- •Вопрос 2 Эффект Холла как метод исследования полупроводников
- •Вопрос 1 Поглощение света в кристаллах
- •Вопрос 2 Закон Видельмана- Франса
- •Вопрос 1Частные случаи общего уравнения переноса
- •Процесс переноса массы
- •Процесс переноса энергии
- •Вопрос 2 Нормальные колебания решетки
- •Вопрос 1 Сравнение механизма электропроводности металлов с механизмов проводимости в полупроводниках
- •Вопрос 2 Теплопроводность твердых тех
- •Вопрос 1 Понятие о симметрии кристаллической решетки
- •Вопрос 2 вакансионный механизм диффузии в твердых телах
- •Вопрос 1 Теплоемкость твердых тел
- •Вопрос 2 Эффект Холла в полупроводниках конечных размеров
- •Вопрос 1 Зависимость концентрации свободных электронов их подвижности и проводимости от температуры
- •Вопрос 2 Используем статистику Ферми-Дирака для описания электронного газа в полупроводнике.
- •Вопрос 1 Электропроводность чистых металлов. Правило Маттисена
- •Вопрос 2
- •Вопрос 1 Понятие эффективного диаметра молекул их длины свободного пробега
- •Вопрос 2 Определение энергии Ферми
- •Вопрос 1 Эффект Холла в неограниченном веществе
- •Вопрос 2 Индексы Милера
- •Вопрос 1 Модель свободных электронов
- •Вопрос 2 Методы изучения структуры твёрдых тел с помощью рентгеновского излучения.
- •Вопрос 1 Понятие о фононах
- •Вопрос 2 Зависимость концентрации, подвижности и проводимости полупроводников от температуры
- •Вопрос 1 Теплопроводность металлов
- •Вопрос 2 определение ширины запрещенной зоны полупроводников оптическим методом
- •Вопрос 1 Квантовая теория электропроводности
- •Вопрос 2 Атомный механизм диффузии в междоузлии
- •Вопрос 1 Сравнение классической теории электропроводности с квантовой
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Условия выбора элементарных ячеек по Браве
- •Вопрос 2 Теория теплоемкости Дебая
- •Вопрос 1 Энергия активации диффузии в твердых телах
- •Вопрос 2 учебник Савельев страница 182, 202 (учебник у Славы )
- •Вопрос 1 Частные случаи общего уравнения переноса.
- •Вопрос 2 Связь подвижности электронов со временем релаксации.
- •Вопрос 1 Пространственные группы и кристаллические классы.
- •Вопрос 1 Учет вклада свободных электронов в теплоемкость.
- •Вопрос 2 Симметрия Кристаллов
- •Вопрос 1 Классификация твёрдых тел
- •Вопрос 2 Зависимость сопротивления проводника от температуры
- •Вопрос 2 Оптика полупроводников
- •Вопрос 1 Частный случай общего уравнения переноса: диффузия
- •Вопрос 2 Кубическая сингания
- •Вопрос 1
- •Вопрос 2 Теория теплоёмкости Эйнштейна. Общие положения.
- •Вопрос 1 Связь межплоскостных расстояний с индексами
- •Вопрос 2 Проводимость примесных полупроводников.
Вопрос 2 Уравнение Аррениуса
Уравне́ние
Арре́ниуса
устанавливает зависимость константы
скорости химической
реакции
от
температуры
.
Согласно
простой модели столкновений химическая
реакция между двумя исходными веществами
может происходить только в результате
столкновения молекул
этих веществ. Но не каждое столкновение
ведёт к химической реакции. Необходимо
преодолеть определённый энергетический
барьер, чтобы молекулы начали друг с
другом реагировать. То есть молекулы
должны обладать некой минимальной
энергией (энергия
активации
),
чтобы этот барьер преодолеть. Из
распределения
Больцмана для кинетической энергии
молекул известно, что число молекул,
обладающих энергией
,
пропорционально
.
В результате скорость химической реакции
представляется уравнением, которое
было получено шведским химиком Сванте
Аррениусом из термодинамических
соображений:
Здесь
характеризует
частоту столкновений реагирующих
молекул,
—
универсальная
газовая постоянная.
В рамках теории активных соударений зависит от температуры, но эта зависимость достаточно медленная:
Оценки этого параметра показывают, что изменение температуры в диапазоне от 200 °C до 300 °C приводит к изменению частоты столкновений A на 10 %.
В рамках теории активированного комплекса получаются другие зависимости от температуры, но во всех случаях более слабые, чем экспонента.
Уравнение Аррениуса стало одним из основных уравнений химической кинетики, а энергия активации — важной количественной характеристикой реакционной способности веществ.
Билет 3
Вопрос 1 Природа пластичности твердых тел
Пластичность
(пластическое течение), в отличие
от двух предыдущих случаев представляет
собой нелинейное поведение. Для пластичных
тел при напряжения, меньших предельного
напряжения сдвига (предела текучести)
τ* скорость
деформации равна нулю (
).
При достижения напряжения τ
= τ* начинается
пластическое течение, которое не требует
дальнейшего повышения напряжения
(рис.6).
|
Пластическое течение, как и вязкое, механически и термодинамически необратимо.
Скорость
диссипации энергии при пластическом
течении пропорциональна скорости
деформации (первой ее степени); такая
зависимость характерна для сухого
трения, т.е. отвечает закону трения
Кулона
,
где FN —
сила прижатия двух тел, направленная
по нормали к трению между ними.
Соответственно, моделью пластического
поведения тела (или дисперсной системы)
могут служить две поверхности
с коэффициентом трения
,
прижатые друг к другу с такой
нормальной силой
,
что касательная к ней сила
отвечает
предельному напряжению сдвига
рассматриваемого материала (рис.7).
|
Природа пластичности — совокупность процессов разрыва и перестройки межатомных связей, которые в кристаллических телах обычно протекают с участием своеобразных подвижных линейных дефектов (дислокаций). Температурная зависимость пластичности может существенно отличаться от таковой для ньютоновской жидкости. При определенных условиях близкое к пластическому поведение обнаруживают различные молекулярные и ионные кристаллы (нафталин, AgCl, NaCl), пластичность характерна многих моно- и поликристаллических металлов.
Вместе с тем, пластичность типична для разнообразных дисперсных структур — порошков и паст. В этом случае механизм пластического течения заключается в совокупности актов разрушения и восстановления контактов между частицами дисперсной фазы. Пластичное тело, в отличие от жидкости, после снятия напряжения сохраняет приданную ему форму.
Таковы три простейших случая механического поведения и отвечающие им реологические модели (упругость, вязкое трение, сухое трение). Комбинируя их, можно получить различные более сложные модели, описывающие реологические свойства самых разнообразных систем. При этом каждая конкретная комбинация рассматривается обычно в определенном, характерном для нее режиме деформирования, в котором проявляются качественно новые свойства данной модели по сравнению со свойствами ее элементов.