Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гос.шпоры ТМ.doc
Скачиваний:
6
Добавлен:
25.04.2019
Размер:
1.7 Mб
Скачать

32. Электрохимическая обработка. Особенности процесса, область применения, технологические возможности.

Основана на электрохимическом растворении материала детали и перевод его в нерастворимое химическое соединение, н-р, гидрат закиси железа (Fe(OH)3) при прохождении между деталью и инструментом в среде электролита электрического тока большой плотности безопасного напряжения (до 36В) ч/з малые зазоры - 0,5 мм и меньше.

.

Точность и производительность зависит от величины зазора. С его уменьшением увеличиваются, но при малых зазорах возникает вероятность электроэрозионного загорания, что ведет к порче инструмента, поэтому обработка ведется с переменным зазором.

Точность обработки также зависит от точности инструмента. На поверхности детали имеем нулевые напряжения.

Процесс электрохимической обработки можно накладывать на любой традиционный процесс.

Т.о. получать электрохимическое точение, фрезерование, шлифование, заточку РИ, клеймение, снятие заусенцев. Для этого отечеств. промышленность выполняет целую гамму станков.

Технологические возможности: точность обработки объемной поверхности до 9-10 кв., шероховатость поверхности 9-10 класс.

33. Электрогидроимпульсная обработка. Особенности процесса, область применения, технологические возможности

Электрогидроимпульсная обработка является процессом, в котором используются высокие скорости пластического деформирования. Источником энергии является энергия высоковольтного разряда в жидкости. Применяется при операции штамповки (гибка, вырубка, обрезка).

Энергия для высоковольтного разряда накапливается батареей конденсатора. На практике применяют установки с энергией 10-30 кДж, при этом используется высокое напряжение 10-50 кВ.

Энергия, накопленная батареей конденсатора, может выделяться в закрытом или открытом объеме. КПД составляет 10-30 %. Процесс высоковольтного разряда является непосредственным преобразованием электрической энергии в механическую работу, т.к. в момент разряда между электродами канал разряда представляет собой низкотемпературную плазму, вокруг которой образуется парогазовая полость, стремительно расширяющаяся и создающая в жидкости (водопроводная вода) импульсно высокие давления, величина которых может быть до 10000 атм. Длительность импульса (200…400)10-6 с. Такое же время необходимо для деформации заготовки, т.е. мы имеем процесс высокоскоростного деформирования.

Процесс электрогидроимпульсной обработки экономически выгодно использовать в м/серийном и опытном производстве, т.к. наличие одного жесткого формообразующего элемента позволяет значительно упростить оснастку, сроки ее изготовления сокращаются от трех месяцев до нескольких дней или минут. Соответственно снижается и стоимость. Недостатком является наличие жидкости, в которой происходит разряд. Частично для устранения данного недостатка выходная часть камеры закрывается резиновой или полиуретановой диафрагмой, что позволяет упростить процесс, но при этом сниж. КПД.

Для пластического деформирования тонколистовых материалов удобнее применять высокоэнергетические установки, в которых силовым элементом является не жидкость, а магнитное поле, т.е. использовать процесс магнитной импульсной обработки. Установка имеет одинаковую схему с электрогидроимпульсной, но т.к. потребная энергия значительно меньше, то рабочее напряжение для зарядки конденсаторов используется до10 кВ.

Чтобы обеспечить более жесткий разряд, используют специальные малоиндуктивные высоковольтные конденсаторы. Энергия батареи конденсаторов выделяется в индукторе. Для деформирования плоских заготовок используется плоский индуктор. Для изготовления трубчатых деталей используются трубчатые индукторы. При прохождении электрического тока через индуктор в нем наводится переменное магнитное поле, которое образует в заготовке вихревые токи Фуко, имеющие свое магнитное поле. Взаимодействие двух магнитных полей приводит к совершению механической работы взаимного отталкивания или притяжения. Использование силового магнитного поля позволяет значительно упростить технологический процесс и легко его автоматизировать.

Благодаря тому, что жесткий формообразующий элемент один, а 2-й элемент жидкость под высоким давлением (1000 Ат.) появляется возможность упростить конструкцию штамповой оснастки. Совместить в одной операции (электрогидроимпульсной) несколько традиционных операций. Таких как вытяжка, формовка, калибровка, чеканка, пробивка, вырубка, отбортовка, упрочнение, снятие внутренних напряжений и др.