Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вышка.docx
Скачиваний:
9
Добавлен:
25.04.2019
Размер:
37.17 Кб
Скачать

30. Кривая Гаусса.

Симметричная параболическая кривая, иногда возникающая при изображении серии результатов на частотном графике. Многие переменные образуют нормальное распределение, когда измерения проводятся в целой популяции. Считается, что рост человека и коэффициент умственного развития подчиняются принципу нормального распределения при достаточно большом количестве участников. На кривой Гаусса большинство результатов концентр. вокруг центра, а наиболее высокие и низкие результаты встречаются гораздо реже. Эти «хвосты» нормального распределения вытягиваются в обоих направлениях вдоль оси абсцисс и теоретически никогда не соприкасаются с нею.

31. Мода и медиана нормального распределения.

для нормального распределения мода, медиана и среднее значение совпадают.

Мода непрерывной случайной величины Mo(X) - значение с.в., имеющее наибольшую вероятность. Если в задаче требуется определить моду - находим экстремум (максимум) плотности вероятности f(x).

32. Равномерный закон распределения.

Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчётов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; 0,5]), в ряде задач массового обслуживания, при стат. моделировании наблюдений, подчинённых заданному распределению.

Плотность распределения:

x

x>b

Числовые характеристики: , ,

33. Правило Зσ.

Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале [x'-3σ; x'+3σ] Более строго — не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина x’ истинная, а не полученная в результате обработки выборки).

34. Закон больших чисел.

Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.