- •0.1. Правила виконання лабораторних робіт
- •0.2. Основні правила техніки безпеки в лабораторії нвч
- •0.3. Вимоги щодо оформлення звіту з лабораторної роботи
- •Лабораторна робота №1
- •Загальні відомості
- •1.2. Вимірювання ксх навантажень
- •1.3. Вимірювання довжини хвилі у хвилеводі
- •1.4. Вимірювання повних опорів
- •1.5. Опис вимірювальної установки
- •1.6. Завдання на експериментальну та розрахункову частини
- •1.7. Порядок виконання роботи
- •1.8. Контрольні запитання
- •1.9. Список використаної та рекомендованої літератури
- •1.10. Розв'язання практичних задач за допомогою кругової діаграми повних опорів (провідностей)
- •Лабораторна робота № 2
- •2.1. Загальні відомості
- •2.2. Потужність, що надходить у навантаження
- •2.3. Електрична міцність лінії при неузгодженому навантаженні
- •2.4. Втрати в лінії з неузгодженим навантаженням
- •2.5. Робота електронних приладів нвч при неузгодженому навантаженні
- •2.6. Методи та пристрої узгодження в трактах нвч
- •2.7. Узгодження за допомогою реактивних трансформаторів
- •2.8. Опис вимірювальної установки
- •2.9. Завдання на експериментальну і розрахункову частини
- •2.10. Порядок виконання роботи
- •2.11. Контрольні запитання
- •2.12. Розв'язання практичних задач
- •2.13. Список використаної та рекомендованої літератури
- •3.1. Загальні відомості
- •3.2. Опис вимірювальної установки
- •3.3. Завдання на експериментальну і розрахункову частини
- •3.4. Порядок виконання роботи
- •3.5. Контрольні запитання
- •3.6, Список використаної та рекомендованої літератури
- •Лабораторна робота № 4
- •4.1. Загальні відомості
- •4.2. Щілинний хвилеводний міст
- •4.3. Подвійний хвилеводний трійник
- •4.4. Опис вимірювальної установка
- •4.5. Завдання на експериментальну та розрахункову частини
- •4.6. Порядок виконання роботи
- •4.7. Контрольні запитання
- •4.8. Список використаної та рекомендованої літератури
- •5.1. Загальні відомості
- •5.2. Опис вимірювальної установки
- •5.3. Завдання на експериментальну та розрахункову частини
- •5.4. Порядок виконання роботи
- •5.5. Контрольні запитання
- •5.6. Список використаної та рекомендованої літератури
- •Лабораторна робота № 6
- •6.1. Загальні відомості
- •6.2. Властивості феритів. Резонансний феритовий вентиль
- •6.3. Опис вимірювальної установки. Методика вимірювання параметрів феритового резонансного вентиля
- •6.4. Завдання на експериментальну і розрахункову частини
- •6.5. Порядок виконання роботи
- •6.6. Контрольні запитання
- •Список використаної та рекомендованої літератури
- •Лабораторна робота №7 дослідження хвилеводних смугових фільтрів
- •7.1. Загальні відомості
- •7.2 Принцип роботи і конструкції фільтрів
- •7.3. Порядок розрахунку смугового фільтра
- •7.4. Завдання на експериментальну та розрахункову частини
- •Параметри основного фільтра
- •7.5. Опис вимірювальної установки і порядок виконання роботи
- •7.6. Контрольні запитання
- •7.7. Список використаної та рекомендованої літератури
- •Лабораторна робота № 8 дослідження oб'ємних резонаторів нвч
- •8.1. Загальні відомості
- •8.2. Прохідний об'ємний резонатор
- •8.3. Опис вимірювальної установки
- •8.4. Завдання на експериментальну та розрахункову частини
- •8.5. Порядок виконання роботи
- •8.6. Контрольні запитання
- •8.7. Список використаної та рекомендованої літератури
- •Лабораторна робота №9 дослідження направленого відгалужувача
- •9.1. Загальні відомості
- •9.2. Опис вимірювальної установки
- •9.3. Завдання на експериментальну і розрахункову частини
- •9.4. Порядок виконання роботи а. Дослідження багатодіркового відгалужувача
- •9.5. Контрольні запитання
- •9.6. Список використаної та рекомендованої літератури
- •Дослідження фільтрів нижніх частот на смужкових лініях
- •10.1. Загальні відомості
- •10.1.1. Несиметрична смужкова лінія передачі (нсл)
- •10.1.2. Мікросмужкова лінія (мсл)
- •10.2. Порядок розрахунку фільтрів нижніх частот (фнч)
- •10.3. Реалізація еквівалентної схеми фнч у діапазоні нвч
- •10.4. Порядок розрахунку фнч для діапазону нвч
- •Вихідні дані для розрахунку фнч
- •10.5. Завдання на експериментальну та розрахункову частини
- •10.6. Порядок виконання роботи
- •Результати експерименту
- •10.7. Контрольні запитання
- •10.8. Список використаної та рекомендованої літератури
- •11.1. Загальні відомості
- •11.2.Призначення і принцип дії короткозамкнутого рухомого навантаження нкп-8
- •11.3. Основні джерела похибок I задачі градуювання вимірювальної лінії
- •11.4. Розрахунок випадкових похибок при прямих вимірюваннях
- •11.5. Опис вимірювальної установки
- •11.6. Завдання на експериментальну частину
- •11.7. Порядок виконання роботи
- •Результати вимірювань
- •Результати вимірювань
- •11.8. Контрольні запитання
- •11.9. Список використаної та рекомендованої літератури
- •12.1. Загальні відомості
- •12.2. Основні характеристики атенюаторів
- •12.3. Методи вимірювання послаблення
- •12.3.1. Метод послідовного заміщення на нвч(рис. 12.1)
- •12.3.2. Метод паралельного заміщення на нвч (рис. 12.2)
- •12.3.3. Метод послідовного заміщання на проміжній частоті(супергетеродинний метод) (рис. 12.3)
- •12.4. Конструкція та принцип роботи поляризаційного атенюатора
- •12.5. Оцінка випадкових похибок прямих рівноточних вимірювань
- •12.6. Опис вимірювальної установки
- •12.7. Завдання до експериментальної та розрахункової частин
- •12.8. Порядок виконання роботи
- •12.9. Контрольні запитання
- •12.10. Список використаної та рекомендованої літератури
- •Додаток 1
- •Додаток 2
- •Д.2.1. Вступ
- •Д.2.2. Призначення
- •Д.2.3. Технічні дані
- •Параметра панорамного вимірювача ксхн
- •Д.2.5. Підготовка до роботи
- •Д.2.6.2. Встановлення рівня потужності гхч
- •Д.2.6.5. Режим роботи вимірювача
- •Д.2.6.6. Панорамне вимірювання ксхн I послаблення в смузі частот
- •Д.2.6.10. Додаткові можливості приладу
- •Д.2.6.11. Вимірювання в логарифмічному режимі
- •Д.2.6.13. Контрольний рівень
- •Д.2.6.14. Запис частотних характеристик на самописі
- •Д.2.6.15. Послаблення неузгоджених чотириполюсників
- •Генератор сигналів г4-ііі/6 д.3.1. Призначення
- •Д.3.2. Технічні дані
- •Д.3.3. Підготовка до роботи
- •Д.3.4. Порядок роботи д.3.4.1. Підготовка до проведення вимірювань
- •Д.3.4.2. Проведення вимірювань
- •Д.4.1. Призначення
- •Д.4.2. Технічні дані
- •Д.4.5. Підготовка до роботи
- •Д.4.6. Порядок роботи д.4.6.1. Підготовка до проведення вимірювань
- •Д.4.6.2. Проведення вимірювань
- •Сергій Володимирович Хуторненко
- •310070, Харків-70, вул. Чкалова, 17
- •310310, Харків-70, вул. Чкалова, 17
10.1.2. Мікросмужкова лінія (мсл)
Для зменшення втрат на випромінювання між смужкою та екраном (область 2 на рис. 10.1) розміщують підложку, виготовлену і з діелектрика з високим εa2. Область 1 над смужкою заповнюють діелектриком з меншою діелектричною проникністю εа1·(εa1 < εа2). Частіше на практиці використовують повітряне заповнення для цієї області. При цьому поле сильніше концентрується в підложці між смужкою та екраном, що знижує втрати на випромінювання. Оскільки МСЛ – це лінія з неоднорідним діелектричним заповненням, хвиля Τ поширюватись в ній не може: на межі двох діелектриків виникають поздовжні складові векторів Ε і Η. Тому основною хвилею в МСЛ є гібридна хвиля (суперпозиція хвиль Е і Н ). Однак і розрахунок, і експерименти показують, що для практичних конструкцій МСЛ на частотах f < 10 ГГц поздовжні складові полів досить малі порівняно з поперечними,і при розрахунках ними можна знехтувати, тобто вважати, що основна хвиля МСЛ – квазі-Т хвиля. Структуру полів квазі-Т хвилі в МСЛ показано на рис 10.3. Для неї λкр = ∞, тобто вона може поширюватись на будь-якій частоті. Основна відмінність цієї хвилі від хвилі Τ полягає в тому, що характеристики квазi-Т хвилі залежать від частоти.
На практиці на частотах f < 10 ГГц такою залежністю нежтують i наближено вважають, що характеристики квазі-Т хвилі від частоти не залежать. Як видно з рис. 10.3, при поширенні квазі-Т хвилі по МСЛ частина енергії рухається в області 1 з параметрами εα1, μαι, а частина – в області 2 з параметрами εa2, μ2. Тому фазова швидкість квазі-Т хвилі більша за швидкість Τ хвилі в діелектрику з εa2, μ2:
Тому, використовуючи вираз (10.2) для квазі-Т хвилі, можна записати:
. (10.10)
Рис. 10.3. Структура поля мікросмужкової лінії передачі
Для
випадку звичайних немагнітних діелектриків
(μа1
=
μа2
= μ0)
i:
, (10.11)
де εrеф – ефективна діелектрична проникність МСЛ, εГ1 < εгеф < εr2.
Основні
характеристики МСЛ з квазі-Т хвилею Vφ,
λ,
ΖΧ
можна
визначити за формулами (10.2) – (10.8),
замінивши скрізь εr
на εreф.
Ефективна діелектрична проникність
МСЛ εreф
залежить від співвідношення енергій,
що поширюються в областях 1 і 2, а тому і
від параметрів і геометричних розмірів
лінії. У випадку
,
,
:
. (10.12)
Геометричні розміри МСЛ за відомим хвильовим опором можна визначити таким чином. Спочатку знаходять допоміжні величини:
,
Потім розраховують, що
п
ри
α
>
2,1:
. (10.13)
При
:
. (10.14)
Похибка обчислень sa виразом (10.13) на перевищує 1%, а за формулою (10.14) – 2%.
10.2. Порядок розрахунку фільтрів нижніх частот (фнч)
У техніці НВЧ широко застосовуються східчасті відбивні ФНЧ. Еквівалентна схема таких фільтрів збігається зі схемою ФНЧ, які виготовляються із реактивних зосереджених елементів (рис. 10.4) і застосовуються на порівняно низьких частотах. Коефіцієнт передачі Τ і, відповідно, величана загасання Bφ, яка вноситься фільтром, зв’язані співвідношенням:
, (10.15)
Рис. 10.4. Еквівалентна схема ФНЧ
І залежать від розміру реактивності та кількості реактивних елементів у схемі. Кількість реактивних елементів у схемі та їх величина вибираються з умови, щоб загасання, яке вносить ФНЧ у смузі пропускання f < fn, не перевищувало заданої величини Вф < Вфmах, а в смузі загородження f < fз було не менше Bф < Bфrnіn. Задовольнити такі вимоги можна різними способами. Найширше застосування в техніці одержали два види ФНЧ: ФНЧ з максимально плоскою амплітудно-частотною характеристикою і ФНЧ з чебишевською амдлітудно-частотною характеристикою (рис. 10.5).
Рис. 10.5. Види амплітудно-частотних характеристик ФНЧ
Слід зазначити, що ФНЧ з чебишевською характеристикою містить меншу кількість реактивних елементів, ніж ФНЧ з максимально плоскою характеристикою, при одних і тих самих вихідних параметрах. Частотна характеристика загасання, яке вноситься ФНЧ з максимально плоскою характеристикою, описується виразом, дБ:
, (10.16)
де
;
fn – вища частота смути пропускання.
Кількість реактивних елементів у еквівалентній схемі ФНЧ з максимально плоскою характеристикою можна обчислити за формулою:
. (10.17)
Нормування величини реактивних елементів такого ФНЧ:
, (10.18)
де і = 1, 2, 3...n.
Якщо ФНЧ навантажений на активний опір Rн, то величина Індуктивностей та ємностей реактивних елементів еквівалентної схеми визначається із співвідношень:
,
Гн, (10.19)
де і = 1, 2, 3, ..., ( n – 1 )/2.
,
Ф, (10.20)
де і = 1, 2, 3, ..., ( n + 1 )/ 2.
Частотна характеристика загасання, яке вноситься ФНЧ з чебишевською характеристикою, описується виразом, дБ:
, (10.21)
де ρ знаходяться із формули (10.16);
Тn – поліном Чебишева 1-го роду і-го порядку.
Кількість реактивних елементів у еквівалентній схемі такого ФНЧ дорівнює:
, (10.22)
де
,
.
Нормування величина реактивних елементів при цьому визначається таким чином:
;
, (10.23)
де і=1, 2, 3, ..., n – 1;
;
;
.
Якщо n – непарне, то qn = q1, якщо n – парне, то:
Величини індуктивностей та ємностей у цьому випадку визначаються із виразів (10.19), (10.20). Таким чином, за формулами (10.16) – (10.23) можна повністю розрахувати еквівалентну схему ФНЧ, якщо задано вид амплітудно-частотної характеристики і fn, fз, Вфmax, Вфmin (див. Рис. 10.5).
