- •1. Що є предметом теорії імовірності? Дати означення події,випробування,вірогідної,випадкової та неможливої подій.Навести приклад.
- •11. Граничні теореми у схемі випробувань бернулі.А)пуассона.Б) Локальну та інтегральну Лапласа.
- •12. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкової величини (н.В.В.). Навести приклади.
- •13. Дати означення ф-ціїї розподілу двовимірної вв. Основні властивості ф-ції розподілу, її геометричний зміст.
- •15. Довести основні властивості математичного сподівання і дисперсії.
- •16. Записати основні закони розподілу д.В.В.: а) біноміальний ; б)Пуассона; в)геометричний; г) гіпергеометричний. Пояснити зміст букв. Навести приклади д.В.В., розподілених за цими законами.
- •18. Нормальний закон розподілу.
- •20. Дати означення вибіркових : а) моди, б) медіани, в) початкового моменту, г) центрального моменту, д) асиметрії, е) ексцесу. Записати формули, пояснити зміст букв.
- •21. Функції одного випадкового аргументу
- •43. Дати означення: а) поліггну; б) гістограми; в)кумулятивної частоти та частостей. Вказати їх імовірнісний зміст.
- •44. Дати означення генеральних та вибіркових дисперсії та середнього квадратичного відхилення. Записати формули для їх обчислення, пояснити зміст букв.
- •48. Інтервальна оцінка та , що визначається 2 числами – кінцями інтервалу.
- •51. Записати формули інтервальної оцінки ймовірності настання події у схемі випробувань Бернуллі.
- •55.Статистична і кореляційна залежність. Функції та лінії регресії.
- •56. Вибіркові рівняння регресії.
11. Граничні теореми у схемі випробувань бернулі.А)пуассона.Б) Локальну та інтегральну Лапласа.
Пуассона:якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність р достатньо мала(прямує до нуля) то з формули бернулі можна вивести формулу Пуассона.P(x)=(xk/k)*e-£. £=m*p. Локальна Лапласа:Якщо при проведенні випробовувань за схемою Бернулі число випробовувань достатньо велике, а імовірність суттєво відрізняється від 0 та 1, то має місце лок лапласа.Pn(k)=(1/√npq)*φ(x). φ(x)=(1/√(2π))*e^-x2/2. x'=knp/√npqПриклад:імовірність помилки в митній справі=0,2Знайти імовірністьт того що в 400 оформленнях помилок буде 100.Р=0,2. n=400 k=100: √npq=√400*0,2*0,8=8, x'=(100-400-0,2)/8=2,5. φ(2,5)=0,175, Р400100 =0,0175/8. Інтегральна Лапласа:Я якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність суттєво відрізняється від 0 та 1,То імовірність того, що наша подія настане: Pn(k1<=k0<=k2)=Ф(x2)- Ф(x1)=(k1-np)/ √npq. Ф(x)=∫0x φ(t)dt-інтегральна лапласа. φ(t)-локальна лапласа.
12. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкової величини (н.В.В.). Навести приклади.
Випадковою величиною називають таку величину, яка в наслідок випробування, може прийняти лише одне числове значення, заздалегідь невідоме і обумовлене випадковими причинами.
Випадкові величини бувають дискретними та непевними.
Дискретною випадковою величиною (ДВВ) називають таку величину, яка може приймати відокремлені ізольовані одне від одного числові значення (їх можна пронумерувати) з відповідними ймовірностями. Наприклад, кількість влучень у мішень при трьох пострілах буде Х: 0, 1, 2, 3. Отже, Х може приймати чотири ізольовані числові значення з різними ймовірностями. Тому Х — дискретна випадкова величина.
Неперервною випадковою величиною (НВВ) називають величину, яка може приймати будь-яке числове значення з деякого скінченного або нескінченного інтервалу (a, b). Кількість можливих значень такої величини є нескінченна.
Наприклад, величина похибки, яка може бути при вимірюванні відстані; час безвідмовної роботи приладу; зріст людини; розміри деталі, яку виготовляє станок-автомат.
13. Дати означення ф-ціїї розподілу двовимірної вв. Основні властивості ф-ції розподілу, її геометричний зміст.
Ф-цією розпділу двв (Х,У) називають ф-цію 2-х змінних F(х,у), яка визначає для кожної пари чисел (Х,У) імовірність виконання нерівностей X<x; Y<y, тобто F(x,y)=P(X<x; Y<y).
Аналогічно визначають ф-цію розподілу n вв: F(х1,х2,…,xn)= P(X<x; Y<y,…, Xn<xn)
Властивості:
0≤ F(x,y)≤1;
F(х,у)не спаднка ф-ція за кожним аргументом, тобто F(x2,y)≥ F(x1,y), якщо x2> x1; F(x,y2) >F(x,y1), якщо у2> у1;
Мають місце граничні співвідношення: F(-∞ ,y)=0; F(x1,∞-)=0; F(∞,∞)=1;
Імовірність влучення випадкової точки до прямокутника { x1 ≤Х ≤х2; у1 ≤У≤ у2}можна знайти за формулою: Р(x1 <Х <х2; у1 <У< у2)= {F(х2,у2)- F(х1,у2)}- {F(х2,у1)- F(х1,у1)}
Геометричний зміст ф-ї розподілу F(х,у) – це імовірність того, що випадкова точка М(Х,У), попаде у нескінченний прямокутник з вершиною в т.(Х,У) і розміщений нижче та лівіше цієї вершини М(Х,У)
14. Дати означення основних числових характеристик в.в.: а) математичного сподівання; б) дисперсії; в) початкового та центрального моментів; г) асиметрії; д) ексцесу; е) моди; ж) медіани. Записати формулу для їх обчислення для д.в.в. та н.в.в.. Пояснити зміст букв, навести приклади.
Математичним сподівання Х називають число, яке дорівнює сумі добутків можливих значень Х на відповідні їм імовірності.
М(Х) або mX —математичне сподівання ДВВ.
Якщо Х приймає нескінченну кількість значень, то
.
Математичне сподівання для НВВ обчислюється за формулою
Де
;
—певне
значення Х;
—
імовірність того,
що Х приймає значення
Дисперсія Х — це число, яке дорівнює математичному сподіванню квадрата відхилення в.в. від її математичного сподівання.
—
дисперсія величини
Х.
Обчислення
дисперсії для ДВВ:
Обчислення
дисперсії для НВВ:
Початковим
моментом порядку k в.в. Х називають
математичне сподівання величини Хk і
позначають
,
k=1,2,…,n.
Центральним
моментом порядку k в.в. Х називають
математичне сподівання величини
і позначають
k=1,2,…,n.
Асиметрією
або коефіцієнтом асиметрії називається
величина
—
центральний момент
3-го порядку
—
середнє квадратичне
відхилення
Якщо
AS=0 (AS
),
то розподіл симетричний (асиметричний);
Якщо AS>0 (AS<0), то асиметрія правостороння (лівостороння).
Ексцес в.в. характеризує плоско- чи гостроверхість розподілу, порівняно з нормативним розподілом з тим же значенням дисперсії.
.
Якщо ЕХ>0 (ЕХ<0), то розподіл гостроверхий
(плосеоверхий).
При графічному способі зображення закону розподілу в.в., значення в.в. імовірність якого найбільша, називають модою (М0).
Медіана (Ме)— це середина відрізку між математичним сподіванням та модою.
