
- •1.1. Волновое уравнение для электромагнитной волны. Основные свойства электромагнитных волн.
- •1.2. Интенсивность электромагнитной волны. Поведение плоской волны на границе раздела сред.
- •2.1. Световая волна. Показатель преломления среды. Законы геометрической оптики.
- •2.2. Оптическая длина пути. Принцип Ферма. Таутохронность.
- •2.3. Формула тонкой линзы, построение изображений в линзах.
- •Принцип суперпозиции волн. Интенсивность при сложении двух волн.
- •Расчет интерференционной картины от двух источников. Ширина полосы и количество наблюдаемых полос.
- •3.3. Способы получения когерентных источников в оптике: бизеркала Френеля, зеркало Ллойда, бипризма Френеля, билинзаБийе.
- •3.5. Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.
- •4.1. Дифракция света. Дифракция Френеля и дифракция Фраунгофера.
- •Принцип Гюйгенса-Френеля. Зоны Френеля.
- •Дифракция Френеля на круглом отверстии и диске.
- •Дифракция Фраунгофера на длинной щели и двух щелях.
- •4.5. Дифракционная решетка
- •5.1 Естественный и поляризованный свет. Типы поляризации. Степень поляризации.
- •5.2Поляризаторы и анализаторы. Прохождение света через совершенные и несовершенные поляризаторы. Закон Малюса.
- •5.3. Поляризация света при отражении. Закон Брюстера.
- •5.4.Прохождение света через анизотропную среду. Одноосные кристаллы. Обыкновенная и необыкновенная волны.
- •Интерференция поляризованных волн.
- •Искусственная анизотропия. Эффект Керра. Вращение плоскости поляризации (оптическая
- •6.1. Поглощение света. Рассеяние света. Дисперсия света
- •6.2. Тепловое излучение, его характеристики и законы.
- •6.3. Квантовая гипотеза Планка, формула Планка.
- •7.5. Неприменимость понятия траектории к микрочастицам. Соотношение неопределенностей Гейзенберга.
- •7.6. Задание состояния частицы в квантовой механике. Волновая функция и ее статистический смысл. Нормировка.
- •7.7.Стационарные состояния. Временное и стационарное уравнение Шредингера.
- •7.8.Частица в одномерной бесконечно глубокой потенциальной яме. Волновые функции и квантование энергии.
- •7.9.Гармонический осциллятор в квантовой механике.
- •7.10. Прохождение частицы через одномерный потенциальный барьер. Туннельный эффект.
- •7.11.Теория Бора для атома водорода. Экспериментальное подтверждение постулатов Бора. Опыт Франка и Герца.
- •7.12. Квантовомеханическая модель атома водорода. Квантовые числа. Энергия, момент импульса и его проекция для электрона в атоме водорода. Спектральные серии атома водорода.
- •7.13. Пространственное квантование. Опыт Штерна-Герлаха. Спин электрона.
- •7.14. Принцип запрета Паули. Периодическая система элементов. Распределение электронов по оболочкам и подоболочкам в атоме.
5.1 Естественный и поляризованный свет. Типы поляризации. Степень поляризации.
Естественный свет - это свет, в котором колебания вектора напряженности Е электрического поля происходят по всевозможным направлениям в плоскости, перпендикулярной направлению распространения (к лучу).
Плоскополяризованный свет - это свет, в котором колебания вектора Е происходят только в одном направлении, перпендикулярном лучу.
Типы поляризации:
В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:
Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.
Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.
Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
Самопроизвольная (спонтанная) — благодаря наличию этого типа поляризации в диэлектрике проявляются нелинейность свойств, то есть явление гистерезиса. Отличается очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)
Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.
Степень поляризации
5.2Поляризаторы и анализаторы. Прохождение света через совершенные и несовершенные поляризаторы. Закон Малюса.
Поляриза́тор — вещество, позволяющее выделить из электромагнитной волны (естественный свет является частным случаем) часть, обладающую желаемой поляризацией при пропускании его сквозь или отражении от поверхности, получая проекцию волны на плоскость поляризации. Они используются в поляризацио́нных фильтрах. В радиотехнике и в быту под поляризатором понимается устройство для преобразования вертикальной или горизонтальной поляризации в круговую (эллиптическую) или наоборот. В антеннах в качестве поляризаторов используют волноводы с вкрученными винтами.
Анализа́тор спе́ктра — прибор для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.
Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.
где I0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, ka - коэффициент прозрачности анализатора.