
- •2.Основні закони геометричної оптики. Принцип Ферма.
- •3.Відбивання та заломлення світла та їх закони.
- •4. Закон проходження світла крізь сферичну поверхню. Формула Лаплпса. Формула тонкої лінзи.
- •5.Інтерференція світлових хвиль. Принцип суперпозиції. Когерентні джерела світла. Дзеркала Френеля. Опит Юнга.
- •6. Інтерференція світла в тонких плівках. Інтерфероменти
- •7. Кільця Ньютона. Інтерфероменти.
- •8. Дифракція світла. Принцип Френеля- Гюйгенса. Зони Фринеля.
- •9.Дифракційна гратка. Дифракція рентгенівських променів. Формула Вульфа - Брегга.
- •10. Поляризація світла. Закон Брюстера. Поляроїди. Закон Малюса.
- •11. Дисперсія світла. Призматичний і дифракційний спектри. Спектральний аналіз. Закон Бугера.
- •12. Теплове випромінювання. Закон Кірхгофа.
- •13. Закони випромінювання абсолютно чорного тіла
- •14. Квантова гіпотеза і формула Планка. Фотони. Маса та імпульс фотона. Тиск світла.
- •17. Ефект Комптона та його теорiя.
- •18. Корпускулярно хвильовий дуалізм. Хвилі де Бройля. Співвідношення невизначеностей. Принцип невизначеності. Дифракція електронів.
- •19. Хвильова функція і її статистичний зміст. Рівняння Шредінгера.
- •У загальному випадку часове рівняння Шредінгера має вигляд
- •20. Частинка в нескінченно глибокій прямокутній потенціальній ямі
- •22.Спектральні серії атома водню. Теорія атома Бора
- •23. Принцип Паулі. Квантові числа електронів. Розподіл електронів в атомі по енергетичних рівнях. Періодична система елементів Менделєєва
- •24. Загальні властивості атомного ядра. Енергія зв’язку атомних ядер.
- •25.Ядерні реакції. Закони збереження в ядерних реакції.
- •26. Ядерні реакції поділу. Ядерний реактор. Ядерні реакції розпаду
- •27.Реакції термоядерного синтезу та їх основні властивості
- •28. Основи дизометрії. Характеристики основних дизометричних величин
- •29. Проблеми існування світового ефіру. Досліди Майкельсона й Морлі
- •30. Постулати спеціальної теорії відносності. Перетворення Лоренца
- •Постулати спеціальної теорії відносності
- •Властивості перетворень Лоренца
- •32. Найважливіші наслідки з формул перетворення Лоренца
- •33. Поняття про релятивійську динаміку
26. Ядерні реакції поділу. Ядерний реактор. Ядерні реакції розпаду
Детальніше: Поділ ядра
1939 року було виявлено, що ядра урану-235 здатні не тільки до спонтанного поділу (на два легших ядра) з виділенням ~200 МеВ енергії та випроміненням двох-трьох нейтронів, але й довимушеного поділу, що ініціюється нейтронами. Враховуючи, що у результаті такого поділу теж випромінюються нейтрони, які можуть викликати нові реакції вимушеного поділу сусідніх ядер урану, стала очевидною можливість ланцюгової ядерної реакції. Така реакція не відбувається у природі лише тому, що природний уран на 99,3% складається з ізотопу урану-238, а до реакції поділу придатний тільки уран-235, якого у природному урані міститься лише 0,7%.
Механізм ядерної реакції розпаду полягає у наступному. Ядерні сили через взаємодію обмінними віртуальними частинками (у більшості випадків відбувається піон-нуклонна взаємодія), час життя яких, відповідно до принципу невизначеності Гейзенберга, обмежений невеликою величиною dt = h'/dE = R/V = (1,3*10-15/3*1010) * (140/8)0,5 = 2,3*10-23 с, мають нецентральний характер. Це означає, що нуклони не можуть взаємодіяти одночасно з усіма нуклонами у ядрі, особливо у багатонуклонних ядрах. При великій кількості нуклонів у ядрі це обумовлює асиметрію густини ядерних сил та наступну асиметрію нуклонного зв'язку, а отже, і асиметрію енергії по об'єму ядра. Ядро набуває форми, яка суттєво відрізняється від сферичної. У такому разі електростатична взаємодія між протонами може за величиною енергії наближатися до сильної взаємодії.
Таким чином, внаслідок асиметрії, енергетичний бар'єр поділу долається, і ядро розпадається на легші ядра, асиметричні за масою.
Іноді ядро може тунелювати у стан з меншою енергією.
Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен в декабре 1942 года в США под руководством Э. Ферми. В Европе первым ядерным реактором стала установка Ф-1. Она была запущена 25 декабря 1946 года в Москве под руководством И. В. Курчатова.[1]
К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3×1016 актов деления в 1 сек.
27.Реакції термоядерного синтезу та їх основні властивості
Термоядерна реакція — реакція синтезу (злиття) легких ядер. У результаті вимушеного зближення між ядрами виникають сили притягання, достатні для втримання ядер. У такий спосіб утворюється новий елемент. У природі такі процеси відбуваються в зірках. На цих реакціях ґрунтується принцип дії водневої бомби.
У реакціях синтезу виділяється енергії більше, ніж при діленні важких ядер. При синтезі 400 грамів гелію звільняється енергія, еквівалентна 10 400 тонам вугілля, або 2 грами дейтерію дають 1013 джоуль енергії.
Але досі на Землі не вдалося здійснити керовану термоядерну реакцію, тому що для зближення ядер атомів на близькі відстані необхідна велика енергія. Єдина можливість – це перевести речовину в стан плазми, а потім збільшити температуру плазми настільки, щоб ядра почали взаємодіяти. Але поки що на Землі не знайдено матеріалу, який би витримав температуру у 10 у 7 степені кельвінів. Некерована реакція синтезу вибухового типу була використана у водневій бомбі.
Створення керованої термоядерної реакції є генеральним напрямом енергетики майбутнього.