
- •Определение понятия раздражимости и возбудимости.
- •1.2.Определение двух основных видов раздражителей и их разновидности.
- •1.3. Пищеварение в полости рта.
- •2.1. Определение понятия клеточной мембраны, протоплазмы, цитоплазмы, гиалоплазмы
- •2.3.Строение спинного мозга.
- •3.2.Мембранные органеллы и их основные функции.
- •4.1.Значение транспорта веществ через клеточную мембрану.
- •4.2. Понятие проницаемости клеточной мембраны
- •4.3. Процесс формирования потенциала покоя и характеристики пп.
- •5.1.Возникновение процесса возбуждения и понятие о потенциале действия
- •5.2. Основные структуры цнс
- •5.3. Основные функции клеточной мембраны
- •6.1.Функциональные особенности структур головного мозга
- •6.2.Строение и физиологические особенности продолговатого мозга.
- •6.3.Пищеварение в тонкой кишке
- •7.1. Строение и функциональные особенности мозжечка
- •7.2. Желудочки головного мозга: особенности, назначение, взаимосвязь анатомическая и функциональная
- •8.1.Строение спинного мозга
- •8.3. Принципц формирования пнс
- •9.1. Одиночный цикл возбуждения: основные характеристики.
- •9.3. Клеточная рецепция
- •10.1. Физиологические свойства возбудимых тканей
- •10.2.Определение понятия «рецепция»
- •10.3. Рецепторные белки
- •11.1. Лиганд-рецепторное взаимодействие
- •11.2.Мембранная рецепция
- •11.3. Скелетная мышца: типы мышечных волокон, двигательные единицы, состав скелетной мышцы
- •12.1. Ядерная рецепция
- •12.2. Сенсорная рецепция
- •12.3. Классификация и свойства рецепторов, специализация
- •13.1. Адаптация, скорость адаптации
- •13.2. Взаимодействие рецепторов
- •13.3. Структурно-функциональные основы мышечного сокращения
- •14.1.Молекулярный механизм мышечного сокращения
- •14.2.Режимы мышечного сокращения,Одиночное сокращение, Тетаническое сокращение
- •14.3.Определение понятия гормоны
- •15.1.,15.2.Режимы мышечного сокращения, Одиночное сокращение, Тетаническое сокращение
- •15.3. 15.3. Структура синапса.
- •16.1.Классификация синапсов
- •16.2. Механизмы и этапы синаптической передачи
- •16.3. Источники гормонов
- •17.1. Взаимодействие медиатора с рецепторами постсинаптической мембраны
- •17.2. Свойства синапсов
- •17.3.Общие свойства и функции гормонов
- •18.1. Пути регулирования синаптической передачи
- •18.2. Химическая классификация гормонов
- •18.3. Функции системы крови
- •19.1. Железы внутренней секреции
- •19.2. Динамика образования и действие гормонов.
- •19.3. Гемостаз крови
- •20.1. Регуляция секреции гормонов
- •20.2.Функциональная классификация гипоталамических нейрогормонов
- •21.1. Гипоталамическая регуляция желез внутренней секреции
- •21.2. Объем циркулирующей крови в организме человека
- •21.3.Функции жкт
- •22.1. Клеточный состав крови
- •22.2. Регуляция объема циркулирующей крови и клеточного состава крови
- •22.3. Первичная и конечная моча
- •23.1. Образование эритроцитов, лейкоцитов, лимфоцитов, тромбоцитов
- •23.2. Понятие свёртывающей системы и противосвёртывающей системы.
- •23.3. Пищеварение в полости рта
- •24.1.Группы крови, резус-фактор
- •24.2.Проводящая система сердца
- •24.3. Внешнее дыхание
- •25.2.Основные физиологические свойства сердечной мышцы
- •25.3. Пищеварение в желудке
- •26.1. Динамика сокращений
- •26.2. Автоматия сердца
- •26.3. Пищеварение в тонкой кишке
- •27.1. Принципы электрокардтографии
- •27.2. Основные параметры сердечной деятельности
- •27.3.Пищеварение в толстой кишке
- •28.1. Печень, пищеварительная функция печени
- •28.2.Физиологические основы голода и насыщения
- •28.3. Механизм вдоха и выдоха
- •29.1. Характеристика легочной вентиляции
- •29.2. Транспорт газов кровью
- •29.3.Выделительная функция. Выделительные органы
- •30.1. Эффект Бора
- •30.2. Транспорт двуокиси углерода
- •30.3.Особенности кровоснабжения почки
- •31.1. Системные механизмы регуляции дыхания.
- •31.2. Легочно-вагусная регуляция дыхания
- •31.3.Периферическая и центральная теория жажды
- •32.1. Функциональная система дыхания
- •32.2. Дыхание в измененных условиях окружающей среды
- •32.3.Нефрон: строение, функции
- •33.1.Механизм мочеобразования
- •33.2. Строение сердца
- •33.3. Мембранные органеллы и их основные функции
- •34.1. Функции жкт
- •34.2. Реабсорбция в петле нефрона
- •34.3. Пищеварение в полости рта
- •35.1.Реабсорбция в дистальных извитых канальцах и собирательных трубочках, реабсорбция глюкозы и аминокислот
- •35.2.Пищеварение в желудке
- •35.3. Проводящая система сердца
- •36.1.Реабсорбция белков, мочевины, воды и солей
- •36.2.Секреторная функция канальцев
- •36.3. Функции жкт
- •37.1.Регуляция мочеобразования
- •37.2.Участие почек в функциональных системах организма
- •37.3. Пищеварение в тонкой кишке
- •38.1. Механизм мочевыведения
- •38.2. Значение транспорта веществ через клеточную мембрану
- •38.3.Пищеварение в толстой кишке
- •39.1. Функциональная система, поддерживающая оптимальный для метаболизма уровень осмотического давления. Понятие приспособительного результата. Рецепция результата
- •39.2.Печень, пищеварительная функция печени
- •40.1. Механизмы жажды и солевой мотивации
- •40.2. Режимы мышечного сокращения,Одиночное сокращение, Тетаническое сокращение
- •40.3. Основные функции клеточной мембраны
26.2. Автоматия сердца
Морфологически сердечная мышечная ткань, в отличие от скелетной не имеет симпластического строения, однако отдельные кардиомиоциты и структурно, и функционально тесно связаны друг с другом посредством вставочных дисков, особенно хорошо выраженных между сократительными кардиомиоцитами. Механическую связь обеспечивают находящиеся в области вставочного диска десмосомы, а функциональное взаимодействие – щелевые контакты или нексусы. В зоне щелевых контактов, которая занимает около 10-20% площади вставочного диска, мембраны соседних клеток находятся на очень малом ( около 2-3 нм) расстоянии друг от друга и пронизаны каналами, которые представляют собой сложные белковые комплексы плазматических мембран и проницаемы для ионов.
Такое строение межклеточных контактов обеспечивает их низкое электрическое сопротивление и свободную передачу электрического сигнала от одной клетки к другой ( по типу электрического синапса). При повреждающих воздействиях (гипотермия, некоторые яды и др.) проницаемость каналов в области щелевых контактов резко снижается, что приводит к нарушениям проведения возбуждения в миокарде. Вставочные диски, расположенные на торцах клеток, соединяют кардиомиоциты «конец в конец», что приводит к образованию мышечных волокон, которые также связаны друг с другом посредством вставочных дисков.
Таким образом, кардиомиоциты объединены в непрерывную электрическую сеть – функциональный синтиций, что отличает миокард от таких возбудимых тканей, как скелетная, мышечная и нервная. Вследствие такого строения миокарда возбуждение, возникшее в любой точке сердца, охватывает его целиком. Кроме кардиомиоцитов, в состав миокарда входят волокна соединительной ткани. Соединительнотканный каркас сердца связывает кардиомиоциты между собой, а также с эндо- и эпикардом, влияя на механические характеристики сердечной мышцы - растяжимость, упругость и т.д.
Миогенная природа автоматии сердца в значительной мере является результатом его ранней эмбриональной дифференцировки (зачаток сердца формируется к концу второй недели эмбриогенеза). Тем самым обеспечивается формирование кровеносной системы плода и оптимальный режим снабжения кислородом всех тканей, включая нервную. С другой стороны, автономность кровеносной системы по отношению к нервной необходима вследствие большой зависимости нервной ткани от уровня доставки кислорода. Прекращение кровоснабжения мозга даже на несколько секунд вызывает резкие функциональные нарушения, которые уже в течение 4-6 мин. приводят к необратимым органическим изменениям в ЦНС.
Зависимость сердечной деятельности и всей системы снабжения организма кислородом от состояния ЦНС резко снизила бы адаптивные возможности организма в условиях действия на него экстремальных факторов среды.
26.3. Пищеварение в тонкой кишке
В тонкой кишке происходят основные процессы переваривания пищевых веществ. Особенно велика роль её начального отдела - двенадцатиперстной кишки. В процессе пищеварения здесь участвует панкреатический, кишечный соки и желчь.
Свойства и состав панкреатического сока - выделяется в двенадцатиперстную кишку 1,5-2,0 л панкреатического сока: в состав желудочного сока входит вода и сухой остаток , который представлен неорганическими и органическими веществами. Панкреатический сок представлен протеолитическими, липолитическими ферментами, переваривающими белки, жиры и углеводы. Альфа- амилаза, липаза и нуклеаза секретируются в активном состоянии; протеазы – в виде проэнзимов. Протеолитические ферменты секретируются в виде проэнзимов- трипсиногена, химотрипсиногена, прокарбоксипептидазы А и В, проэластазы.
Под влиянием энтерокиназы 12-перстной кишки трипсиноген превращается в трипсин. Затем сам трипсин действует автокаталитчески на оставшееся количество трипсиногена и на другие пропептидазы, превращая их в активные ферменты. Регуляция поджелудочной экзокринной секреции осуществляется нервными и гуморальными механизмами. Блуждающий нерв усиливает секрецию поджелудочной железы. Симпатические нервы уменьшают количество секрета, но усиливают синтез органических веществ. Выделяют 3 фазы панкреатической секреции: сложно-рефлекторную, желудочную и кишечную.
На отделение сока поджелудочной железы влияет характер принятой пищи. Эти влияния опосредованы через соответствующие гастроинтестинальные гормоны. Так, пищевые продукты усиливающие секрецию соляной кислоты в желудке, стимулируют выработку секретина, а значит, приводят к выделению поджелудочного сока, богатого бикарбонатами. При длительном преобладании в пищевом рационе только углеводов, или белков, или жиров происходит и соответствующее изменение ферментного состава панкреатического сока (продукты начального гидролиза белков и жиров стимулируют секрецию холецисто- кинин- панкреозимина, которыйв свою очередь способствует выделению сока с большим количеством ферментов.
КИШЕЧНЫЙ СОК представляет собой секрет желёз, расположенных в слизистой оболочке вдоль всей тонкой кишки. У взрослого человека за сутки отделяется 2-3- л. кишечного сока. В кишечном соке находится более 20 ферментов, обеспечивающих конечные стадии переваривания всех пищевых веществ. Это энтеркиназа, пептидаза, щелочная фосфатаза, нуклеаза, липаза, фофолипаза,амилаза, лактаза.Регуляция кишечной секреции осуществляется местными нервно- рефлекторными механизмами, а также гуморальными влияниями и ингредиентами химуса.
Гормоны энтерокинин и дуокринин, выделяемые слизистой оболочкой тонкой кишки, стимулируют соответственно секрецию желёз. Тормозное действие оказывает соматостатин. В тонкой кишке различают два вида пищеварения: полостное и пристеночное.
Полостное пищеварение происходит с помощью ферментов пищеварительных секретов, поступающих в полость тонкой кишки (поджелудочный сок, желчь, кишечный сок). В результате полостного пищеварения крупномолекулярные вещества (полимеры) гидролизуются до стадии олигомеров. Дальнейший их гидролиз идёт в зоне, прилегающей к слизистой оболочке и непосредственно на ней.
Пристеночное пищеварение в широком смысле слова происходит в слое слизистых наложений, находящемся над гликокаликсом, в зоне гликокаликса и на поверхности микроворсинок. Слой слизистых наложений состоит из слизи, продуцируемой слизистой оболочкой тонкой кишки и слущивающимся кишечным эпителием. В этом слое находится много ферментов поджелудочной железы и кишечного сока. Питательные вещества, проходя через слой слизи, подвергаются воздействию этих ферментов. Гликокаликс адсорбирует из полости тонкой кишки ферменты пишеварительных соков, которые осуществляют промежуточные стадии гидролиза всех основных питательных веществ.