Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТО-СПЕЦ ТЛЕГЕН ОТВЕТЫ!ШУТКА.docx
Скачиваний:
6
Добавлен:
23.04.2019
Размер:
546.4 Кб
Скачать

Принцип относительности Галилея Постулаты Специальной Теории Относительности (СТО)

принцип относительности Галилеязаконы динамики одинаковы во всех инерциальных системах отсчета.Этот принцип означает, что законы динамики инвариантны (то есть неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью υ вдоль положительного направления оси x системы K (рис. 7.1.1), преобразования Галилея имеют вид:

x = x' + υt,   y = y',   z = z',   t = t'.

Предполагается, что в начальный момент оси координат обеих систем совпадают.

1

Рисунок 7.1.1. Две инерциальные системы отсчета K и K'.

Из преобразований Галилея следует классический закон преобразования скоростейпри переходе от одной системы отсчета к другой:

ux = u'x + υ,   u y = u'y,   u z = u'z.

Ускорения тела во всех инерциальных системах оказываются одинаковыми:

Следовательно, уравнение движения классической механики (второй закон Ньютона)   не меняет своего вида при переходе от одной инерциальной системы к другой.

Постулаты

  1. Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.

  2. Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K' совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct (рис. 7.1.3), так как системы равноправны и в каждой из них скорость света равна c.

3

Рисунок 7.1.3. Кажущееся противоречие постулатов СТО.

С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K' он будет находиться в точке O'. Следовательно, центр сферического фронта одновременно находится в двух разных точках!

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t'. Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.

Следствия из преобразований Лоренца

  1. Относительность одновременности. Пусть в системе К в точках с координатами x1 и x2 в моменты времени t1 и t2происходят два события. В системе К' им соответствуют координаты x'1 и x'2 и моменты времени t'1 и t'2. Если события в системе К происходят в одной точке (x1 = x2) и являются одновременными (t1 = t2), то, согласно преобразованиям Лоренца,

т.е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.       Если события в системе К пространственно разобщены (x1 ≠ x2), но одновременны (t1 = t2), то в системе К', согласно преобразованиям Лоренца,

      Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными.

  1. Длительность событий в разных системах отсчета. Пусть в некоторой точке A с координатой x, покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) τ = t2 - t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

      Таким образом,  т.е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т.е. ход часов замедляется в системе отсчета, относительно которой часы движутся.

  1. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси x' и покоящийся относительно системы К'. Длина стержня в системе К' равна l'0 = x'2 - x'1, где x'1x'2 - не изменяющиеся со временем t' координаты начала и конца стержня; индекс 0 показывает, что в системе K' стержень покоится. Определим длину стержня в системеK, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты концов стержня x1 и x2в системе K в один и тот же момент времени t. Их разность l = x'2 - x'1 и даст длину стержня в системе К:

  2. Постулаты специальной теории относительности. Преобразования Лоренца

  3.       Специальная теория относительности представляет собой современную физическую теорию пространства и времени. В СТО, как и в классической механике, предполагается, что время однородно (инвариантность физических законов относительно выбора начала отсчета времени), а пространство однородно и изотропно (симметрично). Специальная теория относительности называется также релятивистской теорией, а явления, описываемые этой теорией – релятивистскими эффектами.       В основу СТО легло положение, согласно которому никакая энергия, никакой сигнал не могут распространяться со скоростью, превышающей скорость света в вакууме, а скорость света в вакууме постоянна и не зависит от направления распространения.       Это положение формулируется в виде двух постулатов А. Эйнштейна: принципа относительности и принципа постоянства скорости света.       Первый постулат является обобщением механического принципа относительности Галилея на любые физические процессы и утверждает, что законы физики имеют одинаковую форму (инвариантны) во всех инерциальных системах отсчета: любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе, находящейся в состоянии равномерного прямолинейного движения. Состояние покоя или движения определяется здесь относительно произвольно выбранной инерциальной системы отсчета; физически эти состояния равноправны.       Второй постулат утверждает: скорость света в вакууме не зависит от с корости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.       Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на базе сформулированных им постулатов, показал, что преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам СТО.       Рассмотрим две инерциальные системы отсчета: К (с координатами x, y, z) и К' (с координатами x', y', z'), движущуюся относительно К вдоль оси x со скоростью v = const. Пусть в начальный момент времени (t = t' = 0), когда начала систем координат совпадают (0 = 0'), излучается световой импульс. Согласно второму постулату Эйнштейна скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки A, пройдя расстояние                                                                                                                                (5.6) то в системе K' координата светового импульса в момент достижения точки A будет равна                                                                                                                              (5.7) где t' - время прохождения светового импульса от начала координат до точки A в системе K'. Вычитая (5.6) из (5.7), получим:

  4. Так как x ≠ x' (система K' перемещается относительно K), то получается, что t ≠ t', т.е. отсчет времени в системах K' и Kразличен или имеет относительный характер (в классической механике считается, что время во всех инерциальных системах отсчета протекает одинаково, т.е. t = t').       А. Эйнштейн показал, что в СТО классические преобразования Галилея при переходе от одной инерциальной системы отсчета к другой заменяются преобразованиями Лоренца (1904 г.), удовлетворяющими первому и второму постулатам (табл. 5.1).

  5. Таблица 5.1

  6.       Из преобразований Лоренца вытекает, что при малых скоростях (по сравнению со скоростью света) они переходят в преобразования Галилея. При v > c выражения для x, t, x' и t' теряют физический смысл, т.е. движение со скоростью, большей скорости света в вакууме, невозможно. Кроме того, из табл. 5.1 следует, что как пространственные, так и временные преобразования Лоренца не являются независимыми: в закон преобразования координат входит время, а в закон преобразования времени - пространственные координаты, т.е. устанавливается взаимосвязь пространства и времени. Таким образом, релятивистская теория Эйнштейна оперирует не трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.