Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kompyuternaya_grafika_otvety_na_voprosy.docx
Скачиваний:
26
Добавлен:
22.04.2019
Размер:
760.87 Кб
Скачать

Характеристики цвета

Каждый цвет обладает количественно измеряемыми физическими характеристиками (спектральный состав, яркость):

[Править] Яркость

Одинаково насыщенные оттенки, относимые к одному и тому же цвету спектра, могут отличаться друг от друга степенью яркости. К примеру, при уменьшении яркости синий цвет постепенно приближается к чёрному.

     

     

     

     

     

     

Любой цвет при максимальном снижении яркости становится чёрным.

Следует отметить, что яркость, как и прочие цветовые характеристики реального окрашенного объекта, значительно зависят от субъективных причин, обусловленных психологией восприятия. Так, к примеру синий цвет при соседстве с жёлтым кажется более ярким.[источник не указан 972 дня]

[Править] Насыщенность

Основная статья: Насыщенность (цвет)

Два оттенка одного тона могут различаться степенью блёклости. Например, при уменьшении насыщенности синий цвет приближается к серому.

     

     

     

     

     

     

[Править] Светлота

Основная статья: Светлота (цвет)

Степень близости цвета к белому[источник не указан 972 дня] называют светлотой.

     

     

     

     

     

     

Любой оттенок при максимальном увеличении светлоты становится белым[источник не указан 972 дня].

[Править] Цветовой тон

Основная статья: Тон (цвет)

Цветовой тон — совокупность цветовых оттенков, сходных с одним и тем же цветом спектра. Любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, сходные с одним и тем же цветом спектра (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную — фиолетовым.

     

     

     

     

     

     

Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда — холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света — цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет голубой цвет.

Цветовые модели и системы.

Цветовые модели и системы

Цветовая модель — термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра — то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство

Классификация и различия цветовых моделей:

1.Цветовые модели можно классифицировать по их целевой направленности:

2.XYZ — описание восприятия; L*a*b* — то же пространство в других координатах.

3.Аддитивные модели — рецепты получения цвета на мониторе (например, RGB).

4.Полиграфические модели — получение цвета при использовании разных систем красок и полиграфического оборудования (например, CMYK).

5.Модели, не связанные с физикой оборудования, являющиеся стандартом передачи информации.

6.Математические модели, полезные для каких-либо способов цветокоррекции, но не связанные с оборудованием, например HSV.

Виды цветовых моделей:

Цветовая модель RGB.

RGB (аббревиатура английских слов Red, Green, Blue — красный, зелёный, синий) — аддитивная цветовая модель, как правило, описывающая способ синтеза цвета для цветовоспроизведения. Цветовая модель HSB.

HSV (англ. Hue, Saturation, Valueтон, насыщенность, значение) или HSB (англ. Hue, Saturation, Brightnessоттенок, насыщенность, яркость) — цветовая модель, в которой координатами цвета являются:

Шкала оттенков — Hue

  • Hue — цветовой тон, (например, красный, зелёный или сине-голубой). Варьируется в пределах 0—360°, однако иногда приводится к диапазону 0—100 или 0—1.

  • Saturation — насыщенность. Варьируется в пределах 0—100 или 0—1. Чем больше этот параметр, тем «чище» цвет, поэтому этот параметр иногда называют чистотой цвета. А чем ближе этот параметр к нулю, тем ближе цвет к нейтральному серому.

  • Value (значение цвета) или Brightness — яркость. Также задаётся в пределах 0—100 и 0—1.

Модель CMY.

Модель CMY использует также три основных цвета: Cyan (голубой), Magenta (пурпурный, или малиновый) и Yellow (желтый).  Эти цвета описывают отраженный от белой бумаги свет трех основных цветов RGB модели. Поэтому можно описать соотношения между RGB и CMY моделями следующим образом:

               .

 

 

Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью.

Цветовая модель CMYK.

Четырёхцветная автотипия (CMYK: Cyan, Magenta, Yellow, Key color) — субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати. Схема CMYK, как правило, обладает (сравнительно с RGB) небольшим цветовым охватом. Цветовая модель Lab.

В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха в цеху или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цветокоррекции. Перцепционные цветовые модели.

Законы Грассмана.

Закон Грассмана в оптике и колориметрии — эмпирическое наблюдение, что восприятие хроматической составляющей цвета описывается примерно линейным законом. Это правило было открыто Германом Грассманом в 1853 году

Если выбранный цвет есть комбинация двух монохроматических цветов, тогда значение каждого основного цвета у наблюдателя будет составлять сумму значений основных цветов для каждого из монохроматических цветов, рассматриваемых отдельно друг от друга.

В других словах, если луч 1 и 2 — монохроматичны, и наблюдатель ставит в соответствие значения основных цветов (R1,G1,B1) для луча 1, и (R2,G2,B2) для луча 2, то если два луча смешиваются и наблюдается результирующий цвет, то этому будут соответствовать значения(R,G,B) равные сумме основных цветов по каждой компоненте.

  1. Цветовые модели и системы.

Цветовые модели и системы

Цветовая модель — термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра — то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство

Аддитивные цветовые модели.

Аддитивные цветовые модели

Аддитивная модель

В аддитивной модели смешивания цвета получаются как смешивание лучей. При отсутствии лучей нет никакого цвета — чёрный, максимальное смешение даёт белый. Примером аддитивной цветовой модели является RGB.

  1. Цветовые модели и системы.

Цветовые модели и системы

Цветовая модель — термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра — то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство

Субтрактивные цветовые модели.

Субтрактивные цветовые модели

Субтрактивный синтез цвета

Способ, использующий отражение света и соответствующие красители В субтрактивной модели смешивания цвета получаются как смешивание красок. При отсутствии краски нет никакого цвета — белый, максимальное смешение даёт чёрный. Примером субтрактивной цветовой модели является CMYK.

Основных цветов по Иоганнесу Иттену существует всего 3: красный, жёлтый и синий. Остальные же цвета цветового круга образуются смешиванием этих трех в различных пропорциях.

  1. Цветовые модели и системы.

Цветовые модели и системы

Цветовая модель — термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра — то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство

Перцепционные цветовые модели.

Перцепционные цветовые модели

Еще один класс цветовых моделей - это модели перцепционные, то есть как бы имитирующие восприятие цвета. В том же 1931 году, когда была создана модель RGB, C1E был проведен эксперимент по изучению реакции глаза на свет различного спектрального состава. Целью было создание колориметрической системы, основанной на RGB, но отличающейся большим удобством, в частности, отсутствием отрицательных координат. Для оценки возможностей восприятия цвета стандартным наблюдателем был проведен эксперимент по измерению реакции большого числа людей на цвет разного спектрального состава.

Теоретически любой видимый цвет можно описать как точку в трехмерном пространстве XYZ. Однако с практической точки зрения это не удобно. Поэтому новаторы из CIE пошли дальше и создали нормированный вариант: xyY. Странным образом названия величин здесь, словно нарочно, подобраны так, чтобы запутать читателя. Но из песни слово, а из пространства ось не выкинешь, поэтому придется разбираться, что это еще за два игрека. Оказывается, они не имеют друг к другу прямого отношения. «Y» — это всего лишь ось яркости, уже знакомая нам по пространству HSL, x=X/(X+Y+Z), y=Y/(X+Y+Z)

У модели xyY был существенный недостаток - неравномерность с точки зрения человеческого восприятия. Дело в том, что разрешающая способность человеческого глаза сильно зависит от участка спектра. Неравномерность составляет 80:1. Так, различение оттенков зеленого цвета существенно ниже, чем красного или желтого. Поэтому если сравнить на плоскости ху две точки, находящиеся на некотором расстоянии друг от друга в зеленой области, и две точки, находящиеся на таком же расстоянии в оранжевой области, то в первом случае оттенки их окажутся практически неразличимы для человека, во втором - разница будет ощутимой. Чтобы победить этот недостаток, исходные экспериментально полученные величины в модели XYZ были определенным образом преобразованы. Изменения носят достаточно эмпирический характер, они не вытекают из каких-либо фундаментальных законов природы, а просто подобраны. Полностью избежать неравномерности не удалось, но получилось уменьшить ее до 6:1. Эти преобразования привели к появлению модели Lab (L - яркость (lightness), а и b - цветовые каналы).

Считается, что Lab является аппаратно-независимой моделью, то есть цвет описывается независимо от сформировавшего его конкретного устройства. Прежде всего, в результате преобразований получилась модель, в которой цвет объекта определяется параметрами белого цвета. Значения белого в разных стандартах сильно разнятся. Для разных устройств и технологий приняты разные стандарты белого, поэтому аппаратная независимость становится, скажем так, немного фиктивной. Однако, несмотря на недостатки, на сегодняшний день Lab является наиболее продвинутой цветовой моделью.

Как известно человеческий глаз обладает цветовым охватом, намного превышающим возможности любого технического устройства, будь то сканер или принтер, использующие цветовые системы RGB и CMYK соответственно. В разд. 2.1-2.2 было показано, что RGB- и CMYK-модели являются аппаратнозависимыми. Это значит, что воспроизводимый или создаваемый с их помощью цвет не только определяется составляющими модели, но и зависит от характеристик устройства вывода.

Для устранения аппаратной зависимости был разработан ряд так называемых перцепционных (иначе − интуитивных) цветовых моделей. В их основу заложено раздельное определение яркости и цветности. Такой подход обеспечивает ряд преимуществ:

• позволяет обращаться с цветом на интуитивно понятном уровне;

• значительно упрощает проблему согласования цветов, поскольку после установки значения яркости можно заняться настройкой цвета.

Существует несколько цветовых моделей, использующих концепцию разделения яркости и цветности:

• HSV,

• HIS,

• HSB,

• HSL,

• YUV.

Общим для них является то, что цвет задается не в виде смеси трех основных цветов: красного, синего и зеленого, − а определяется путем указания двух компонентов: цветности (цветового тона и насыщенности) и яркости.

  1. Основные законы и принципы композиции.

Композиция — важнейший организующий компонент художественной формы, придающий произведению единство и цельность, соподчиняющий его элементы друг другу и всему замыслу художника. Композиционное решение в изобразительном искусстве связано с распределением предметов и фигур в пространстве, установлением соотношения объемов, света и тени, пятен цвета и т. п.

Правила композиции: 1. Простота решения 2. Уместность элементов 3. Внимание к деталям 4. Равновесие компоновки 5. Пропорциональность

Законы: 1. Закон равновесия – все элементы сбалансированы между собой: статическое равновесие (впечатление неподвижность) и динамическое равновесие (впечатление движения и внутренней динамики) 2. Закон целостности и единства – как единое целое 3. Закон соподчинения – выделение центра композиции (доминанты)

Золотое сечение.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Художественные средства построения композиции.

Художественные средства построения композиции: 1. Точка 2. Линия 3. Пятно 4. Цвет

  1. Средства гармонизации художественной композиции

Композиция — важнейший организующий компонент художественной формы, придающий произведению единство и цельность, соподчиняющий его элементы друг другу и всему замыслу художника. Композиционное решение в изобразительном искусстве связано с распределением предметов и фигур в пространстве, установлением соотношения объемов, света и тени, пятен цвета и т. п.

Средства гармонизации художественной формы 1. Доминанта или композиционный центр 2. Нюанс(слабое различие эл-тов) –контраст – тождество (полное или частичное сходство) 3. Ритм (неравномерное изменение свойств элементов компзиц) – метр (повторение равных элементов) 4. Статика (состояние покоя) –динамика (зрит восприятие движения) 5. Симметрия-асимметрия Контрасты 1. Цветовой 2. Светлый-темный 3. Насыщенность 4. Температура 5. Доп цвета 6. Площади Перспектива – явление кажущегося искажения пропорций и формы тел 1. Тональная 2. Прямая линенйная 3. Обратная линейная 4. Панорамная 5. Аксанометрия 6. Сферическая 7. Воздушная

  1. Виды перспективы.

Перспекти́ва (фр. perspective от лат.  perspicere — смотреть сквозь) — наука об изображении пространственных объектов на плоскости или какой-либо поверхности в соответствии с теми кажущимися сокращениями их размеров, изменениями очертаний формы и светотеневых отношений, которые наблюдаются в натуре. Другими словами, это:

Явление кажущегося искажения пропорций и формы тел при их визуальном наблюдении. Например, два параллельных рельса кажутся сходящимися в точку на горизонте.

Способ изображения объемных тел, передающий их собственную пространственную структуру и расположение в пространстве. В изобразительном искусстве возможно различное применение перспективы, которая используется как одно из художественных средств, усиливающих выразительность образов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]