Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
блеать.docx
Скачиваний:
1
Добавлен:
22.04.2019
Размер:
241.61 Кб
Скачать

13. Интерференция света при отражении на тонких пластинах

Явление интерференции в тонких пленках широко наблюдается в естественных условиях: радужная окраска мыльных пузырей, нефтяных пленок, масляных пятен на поверхности воды, крыльев бабочки.

В этом случае интерферируют лучи, полученные от отражения падающего луча от верхней и нижней поверхностей. Оптическая разность хода между лучами не велика из-за малой толщины пленки и поэтому они принадлежат одному цугу, а значит когерентны.

Падающая волна частично отражается от поверхности пленки (луч 1) и частично преломляется (луч OC). Преломленная волна, достигнув нижней поверхности пленки, отражается от нее (луч CB). Луч CB затем преломляется на верхней поверхности (луч 2). Лучи 1 и 2 с помощью линзы собираются на экране в точке P и интерферируют. Результат интерференции зависит от оптической разности хода между лучами 1 и 2.

Оптическая разность хода между двумя интерферирующими лучами от точки O до плоскости AB равна:

где - показатель преломления пленки, член обусловлен потерей полуволны при отражении света от границы раздела с оптически более плотной средой. Расстояния OA, OC и CB находится геометрическим методом (

: ,

.

14Локолизация полос интерференции.Полосы равного наклона и равной толщины.

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки.

Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы. Возникающие при этом интерференционные полосы называются полосами равного наклона.

Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона.

Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. В случае точечного источника полосы можно наблюдать всюду, т.е. они не локализованы. Но на бесконечности или в фокальной плоскости собирающей линзы полосы наблюдаются и при протяженном источнике. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цвета тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.

15.. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.метод графического сложения амплитуд.

Дифракция света – это явление отклонения волн от прямолинейного распространения, явление огибания волнами препятствий и проникновения волн в область геометрической тени.

. Принцип Гюйгенса-Френеля - краеугольный камень волновой теории. Он позволяет объяснить механизм распространения волн. Принцип состоит из двух частей. Первая часть носит название принцип Гюйгенса (1678). Его суть состоит в том, что каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Точка же, огибающая вторичные волны становится волновой поверхностью в следующий момент времени.

Вторая часть принципа носит название принцип (дополнение) Френеля (1815). Он звучит следующим образом: каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Для упрощения расчета результата интерференции большого числа волн используется метод зон Френеля. Фронт световой волны делят на области (зоны) так, что оптическая разность хода l волн, пришедших в некоторую точку экрана от соседних зон, равна /2; в этом случае разность фаз этих волн равна

, т.е. волны будут гасить друг друга и точка экрана не будет освещена. Если волны распространяются в воздухе, то оптическая разность хода будет равна разности расстояний, пройденных этими волнами.

Дифракция Френеля на небольшом диске.

В этом случае диск закрывает первых зон Френеля. Амплитуда результирующего колебания в точке равна:

Итак, в случае диска в точке M всегда будет светлое пятно, окруженное концентрическими темными и светлыми кольцами, а интенсивность в максимумах убывает с расстоянием от центра картины.

В методе графического сложения амплитуд фронт волны разбивают на участки, значительно меньшие, чем зоны Френеля. Условия: расстояние до каждого следующего участка ув-ся на одну и ту же величину σ – меняется фаза колебаний, приходящая из каждого уч-ка. Результирующую амплитуду получим, как результат графического сложения амплитуд Еmk, приходящих из каждого участка:

Зона Френеля, построенная в отверстии из т. наблюдения представляет собой кольца радиусом ρk, причем для последней зоны ρk=ρ0. Интенсивность в т. А определяется числом зон Френеля, укладывающихся в отверстие:

Для результирующей амплитуды:

k – нечет.:

k – чет.:

В целом картина получается в виде черед-ся светлых и темных колец. В центре темное пятно. Пусть на пути расходящихся лучей стоит преграда в виде круглого диска: k зон закрыты. Тогда все зоны от (k+1)-ой до ∞ – открыты.

П ричем зон тем больше , чем меньше k, т.е. размеры диска. В целом картина – чередующиеся темные и светлые кольца, в центре светлое пятно