Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика котр.doc
Скачиваний:
27
Добавлен:
22.04.2019
Размер:
3.85 Mб
Скачать

Квантовая природа излучения

● Закон Стефана-Больцмана

,

где - энергетическая светимость (излучательность) черного тела; σ=5,67∙10-8 Вт/м2К4 – постоянная Стефана-Больцмана; Т- термодинамическая температура.

● Связь энергетической светимости и спектральной плотности энергетической светимости или черного тела

.

● Энергетическая светимость «серого» тела

,

где АТ – поглощательная способность «серого» тела.

● Закон смещения Вина

,

где - длина волны, соответствующая максимальному значению спектральной плотности энергетической светимости черного тела; b=2,9∙10-3 м∙К - постоянная Вина.

● Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры

,

где С=1,29∙10-5 Вт/(м3∙К5).

● Формула Релея-Джинса для спектральной плотности энергетической светимости черного тела

,

где k- постоянная Больцмана.

● Энергия кванта

,

где h=6,625∙10-34 Дж∙с – постоянная Планка.

● Формула Планка

.

● Уравнение Эйнштейна для фотоэффекта

,

где hν – энергия фотона, падающего на поверхность металла; Авых – работа выхода электрона из металла; - максимальная кинетическая энергия фотоэлектрона.

● «Красная граница» фотоэффекта для данного металла

,

где λ0 – максимальная длина волны излучения ( ν0 – соответственно минимальная частота), при которой фотоэффект еще возможен.

● Импульс фотона

.

● Давление, производимое светом при нормальном падении на поверхность,

,

где - облученность поверхности (энергия всех фотонов, падающих на единицу поверхности в единицу времени); ρ – коэффициент отражения;

- объемная плотность энергии излучения.

● Изменение длины волны рентгеновского излучения при комптоновском рассеянии

,

где λ и λ′ - длина волн падающего и рассеянного излучений; m0 – масса электрона; θ – угол рассеяния; - комптоновская длина волны.

Примеры решения задач

Задача 1. Математический маятник длиной l1=40 см и физический маятник в виде тонкого прямого стержня длиной l2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние a центра масс стержня от оси колебаний.

Решение:

При синхронном колебательном движении маятников их периоды равны ,

где .

Отсюда

(1)

Момент инерции физического маятника определяется по теореме Штейнера:

(2)

Подставив (2) в (1), получим квадратное уравнение

(3)

Из (3) найдем два корня: a1=10 см, a2=30 см.

Таким образом, при одном и том же периоде колебаний физического маятника возможны два варианта расположения оси.

Величину (1) называют приведенной длиной физического маятника.

Ответ: a1=10 см, a2=30 см.

Задача 2. В вакууме распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны 0,1 А/м. Определить энергию, переносимую этой волной через поверхность площадью 1 м2, расположенную перпендикулярно направлению распространения волны, за время t = 1 с. Период волны T<< t.

Решение:

Плотность потока энергии электромагнитной волны определяется вектором Пойнтинга:

, где и – векторы напряженности электромагнитного и магнитного полей. Учитывая, что векторы и электромагнитной волны взаимно перпендикулярны, для модуля вектора p получим

p = EH.

Так как величины E и H в каждой точке волны меняются со временем по гармоническому закону, находясь в одинаковых фазах, то мгновенное значение p равно

p = Em

Энергия, переносимая через площадку S, перпендикулярную направлению распространения волны, в единицу времени,

Учитывая, что в электромагнитной волне

найдем:

Em = Hm

Тогда выражение (*) принимает вид

Энергия, переносимая волной за время t, равна

W =

По условию T<< t, поэтому ; тогда

W =

Подставляя числовые значения, получим

W = (0,1 А/м)2 1 м2 1 с = 1,88 Дж

Ответ: W = 1,88 Дж.

Задача 3. Радиусы кривизны поверхностей линзы R1 = R2 = 20 см. Определить: а) фокусное расстояние линзы в воздухе; б) фокусное расстояние этой же линзы, погруженной в жидкость (nж = 1,7). Показатель преломления материала линзы nл = 1,5.

Решение:

Формула тонкой линзы

Применим данную формулу для случая (a), когда линза находится в воздухе, учитывая, что R1 = R2 = R

отсюда

Для случая (б), когда линза погружена в жидкость

откуда

Ответ: F1 = 0,2 м; F2 = - 0,85 м

Задача 4. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Расстояние между вторым и двадцатым темными кольцами Δ τ2,20 = 4,8 мм

Найти расстояние между девятым и шестнадцатым темными кольцами Ньютона.

Решение:

Радиус темных колец в отраженном свете определяется формулой:

τR = , где

𝑘 – порядковый номер кольца;

λ – длина волны;

R – радиус кривизны линзы.

Отсюда

  1. Δ τ2,20 = - = ( )

  2. Δ τ9,16 = - = ( ) =

Из (1) имеем

= , подставим в (2)

Δ τ9,16 = = = 1,57 10 – 3 м

Ответ: Δ τ9,16 = 1,57 10 – 3 м = 1,57 мм

Задача 5. На дифракционную решетку нормально падает монохроматический свет. Определить угол дифракции для линии λ1 = 550 нм в четвертом порядке, если этот угол для линии λ2 = 600 нм в третьем порядке составляет 30˚.

Решение:

Формула дифракционной решетки для двух линий

dsinφ1 = 4 λ1 (1)

dsinφ2 = 3 λ2 (2)

Поделим уравнение (1) на уравнение (2) и получим

= или =

откуда sinφ1 = = = 0,61

φ1 = arcsin 0,61 = 37˚42΄

Ответ: φ1 = 37˚42΄

Задача 6. Найдите угол полной поляризации (iБр) при отражении света от стекла (nc = 1,57), помещенного в воду (nв = 1,33). Определить скорость света в воде.

Решение:

Согласно закону Брюстера tg iБр = при этом n1 = nв; n2 = nс

Тогда tg iБр = = 1,18, следовательно, iБр = arctg 1,18 ≈ 50˚

Абсолютный показатель преломления среды n = , тогда, зная nв, найдем скорость распространения света в воде: V = = = 2,26 108

Ответ: iБр ≈ 50˚; V = 2,26 108

Задача 7. Температура внутренней поверхности электрической печи

T = 700˚C. Определите мощность излучения печи через небольшое отверстие диаметром d = 5 см, рассматривая его как излучение абсолютно черного тела.

Решение:

Из закона Стефана – Больцмана энергетическая светимость (излучательность) черного тела R = σ T 4. Другой стороны, N = R S, где S – площадь отверстия.

S = П τ 2 = П ( ) 2 = , подставим

N = R S = σ T 4 * = = 9,97 101 = 99,7 Вт

Ответ: N = 99,7 Вт

Задача 8. Красная граница фотоэффекта для металла λк = 6,2 10 – 5 см. Найти величину запирающего напряжения для фотоэлектронов при освещении металла светом длиной волны λ = 330 нм.

Решение:

Запирающее напряжение – это напряжение на электродах, способное остановить электроны, вылетевшие из металла. Следовательно, работа сил электрического поля Аэ равна кинетической энергии фотоэлектронов. Аэ = Ек или е U = Ек. Кинетическую энергию определяем из уравнения Эйнштейна.

hν = Aвых + Ек => Eк = hν - Aвых

Если известна красная граница фотоэффекта, то работа выхода определяется из выражения Aвых = h νк = h

Подставим е U = h - h = h C )

откуда U = -

U = = 1,76 В

Ответ: U = 1,76 В