Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по экологии для заочников и рефераты.doc
Скачиваний:
22
Добавлен:
22.04.2019
Размер:
403.97 Кб
Скачать

3. Состав и границы биосферы

Биосфера, являясь глобальной экосистемой (экосферой), как и любая экосистема, состоит из абиотической и биотиче­ской части.

Абиотическая часть представлена:

  1. почвой и подстилаю­щими ее породами до глубины, где в них еще есть живые орга­низмы, вступающие в обмен с веществом этих пород и физи­ческой средой порового пространства,

2) атмосферным возду­хом до высот, на которых возможны еще проявления

жизни,

3) водной средой океанов, рек, озер и т. п.

Биотическая часть состоит из живых организмов всех таксонов, осуществляющих важнейшую функцию биосферы, без которой не может существовать сама жизнь: биогенный ток атомов. Живые организмы осуществляют этот ток атомов бла­годаря своему дыханию, питанию и размножению, обеспечи­вая обмен веществом между всеми частями биосферы.

В основе биогенной миграции атомов в биосфере лежат два биохимических принципа:

  • стремиться к максимальному проявлению, к «всюдности» жизни,

  • обеспечить выживание организмов, что увеличивает биогенную миграцию.

Эти закономерности проявляются в стремлении живых организмов охватить

все приспособленные к их жизни пространства, создавая экосистему или её часть. Но любая экосистема имеет свои границы, и также биосфера имеет свои границы в планетарном масштабе.

Верхняя граница биосферы – в атмосфере. По мнению одних ученых проходит на высоте вершины Гималаев, по мнению других – достигает нижних слоев стратосферы, иногда считают – озоновый шар.

Нижняя граница – в литосфере четко не определена. Самое глубокое расстояние, где были найдены живые вещества 2 – 3 км.

Граница биосфере в гидросфере – биосфера охватывает всю гидросферу.

Границы биосферы — от вы­сот атмосферы, где царят холод и низкое давление, до глубин океана. Это стало возмож­ным потому, что пределы толерантности температур у различ­ных организмов — от абсолютного нуля до +180 °С, а некото­рые бактерии могут существовать в вакууме. Широк диапазон химических условий среды для ряда организмов — от жизни в уксусе до жизни под действием ионизирующей радиации (бак­терии в котлах ядерных реакторов). Более того, выносливость некоторых живых существ по отношению к отдельным факто­рам выходит даже за пределы биосферы, т. е. у них есть еще определенный «запас прочности» и потенциальные возможно­сти к распространению.

Однако все организмы выживают еще и потому, что везде, где бы ни было их местообитание, существует биогенный ток атомов. Этот ток не смог бы иметь места, во всяком случае, в наземных условиях, если бы не было почв.

Почвы — важнейший компонент биосферы, оказывающий наряду с Мировым океаном решающее влияние на всю глобальную экосистему в целом. Именно почвы обеспечивают пи­тание биогенными веществами растения, которые кормят весь мир гетеротрофов.

4. Круговорот веществ в природе

Основных круговоротов веществ в природе два: большой (геологический) и малый (биогеохимический).

Большой круговорот веществ в природе (геологиче­ский) обусловлен взаимодействием солнечной энергии с глу­бинной энергией Земли и осуществляет перераспределение ве­щества между биосферой и более глубокими горизонтами Зем­ли.

Осадочные горные породы, образованные за счет вывет­ривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и дав­лений. Там они переплавляются и образуют магму — источ­ник новых магматических пород. После поднятия этих по­род на земную поверхность и действия процессов выветри­вания вновь происходит трансформация их в новые осадоч­ные породы. Символом круговорота веществ явля­ется спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то но­вое, что со временем приводит к весьма значительным из­менениям.

Большой круговорот — это и круговорот воды между су­шей и океаном через атмосферу. Влага, испарившаяся с по­верхности Мирового океана (на что затрачивается почти поло­вина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подзем­ного стока. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана — конденсация водяного пара — выпадение осадков на эту же водную поверх­ность океана.

Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды.

Круговорот воды в целом играет основную роль в форми­ровании природных условий на нашей планете. С учетом транспирации (испарения воды через листья) воды растениями и поглощения ее в биогеохимиче­ском цикле, весь запас воды на Земле распадается и восста­навливается за 2 млн лет.

Малый круговорот веществ в биосфере (биогеохими­ческий), в отличие от большого, совершается лишь в преде­лах биосферы. Сущность его в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в пре­вращении органического вещества при разложении вновь в не­органические соединения.

Этот круговорот для жизни биосферы — главный, и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей пла­нете, обеспечивая биогеохимический круговорот веществ.

Главным источником энергии круговорота является сол­нечная радиация, которая порождает фотосинтез. Эта энер­гия довольно неравномерно распределяется по поверхности земного шара. Например, на экваторе количество тепла, при­ходящееся на единицу площади, в три раза больше, чем на архипелаге Шпицберген (80° с.ш). Кроме того, она теряется путем отражения, поглощается почвой, расходуется на транспирацию воды и т. д. на фотосинтез тратится не более 5% от всей энергии, но чаще всего 2—3 %.

В ряде экосистем перенос вещества и энергии осуществ­ляется преимущественно посредством трофических цепей.

Такой круговорот обычно называют биологическим. Он предполагает замкнутый цикл веществ, много­кратно используемый трофической цепью. Безусловно, он может иметь место в водных экосистемах, особенно в планктоне с его интенсивным метаболизмом, но не в наземных экосистемах, за исключением дождевых тропических лесов, где может быть обеспечена передача питательных веществ «от растения к растению», корни которых на поверхности поч­вы.

Однако в масштабах всей биосферы такой круговорот невозможен. Здесь действует биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ (СО2, Н2О) с веществом атмосферы, гидросферы и литосферы. Круговорот отдель­ных веществ В. И. Вернадский назвал биогеохимическими циклами. Суть цикла в следующем: химические элементы, поглощенные организмом, впоследствии его покидают, ухо­дя в абиотическую среду, затем, через какое-то время, сно­ва попадают в живой организм и т. д. Такие элементы на­зывают биофильными.

В биогеохимических круговоротах следует различать две части, или как бы два среза:

  1. резервный фонд — это огром­ная масса движущихся веществ, не связанных с организма­ми,

2) обменный фонд — значительно меньший, но весьма активный, обусловленный прямым обменом биогенным ве­ществом между организмами и их непосредственным окру­жением.

Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с ре­зервным фондом в атмосфере и гидросфере (океан) и 2) оса­дочный цикл с резервным фондом в земной коре (в геологи­ческом круговороте).

В связи с этим, следует отметить, лишь один-единствен­ный на Земле процесс, который не тратит, а, наоборот, свя­зывает солнечную энергию и даже накапливает ее — это соз­дание органического вещества в результате фотосинтеза. В свя­зывании и запасании солнечной энергии и заключается основ­ная планетарная функция живого вещества на Земле.