
- •1. Классификация деталей и узлов машин. Основные направления в развитии конструкции машин.
- •2. Виды нагрузок, действующие на детали машин.
- •3. Допускаемые и предельные напряжения. Запас прочности. Табличный и дифференциальный методы определения допускаемых напряжений и запаса прочности.
- •4. Определение допускаемых напряжений для деталей, изготовленных из пластических, малопластичных и хрупких материалов при действии статической нагрузки.
- •5. Основные критерии работоспособности и расчёта деталей машин.
- •7. Классификация соединений и критерии их работоспособности.
- •8. Конструкция, классификация и область применения заклепочных соединений. Разновидности заклепок, материалы, применяемые для изготовления заклепок.
- •9. Расчет заклепочных соединений.
- •10. Сварные соединения, общие сведения, классификация, применение. Расчет сварных соединений встык при нагружении центрально-приложенной силой и моментом.
- •11. Соединения внахлестку. Расчет лобовых соединений швов, нагруженных центрально - приложенной силой и моментом.
- •12. Расчет фланговых швов при нагружении растягивающей силой и моментом.
- •13. Соединения контактной сваркой. Общие сведения, расчет.
- •14. Соединение деталей с гарантированным натягом. Общие сведения, применение. ___Усилия запрессовки и распрессовки.
- •15. Материалы резьбовых соединений. Предохранение резьбовых соединений от самоотвинчивания.
- •16. Момент завинчивания. Кпд и условия самоторможения.
- •17. Резьбовые соединения, основные понятия и определения. Типы резьб. Взаимодействие между винтом и гайкой.
- •18. Расчет винтовых соединений при нагруженном силами в плоскости стыка.
- •20. Расчет групповых резьбовых соединений, работающих на сдвиг.
- •21 .Расчет винтовых соединений при действии центральной отрывающей силы.
- •22. Расчет резьбовых соединений, нагруженных моментом и силой, раскрывающими стык деталей.
- •23. Расчет винтов, подверженных переменной нагрузке.
- •24. Шпоночные соединения. Классификация, расчет, применение.
- •26. Соединение штифтами. Конструкция, классификация применение.
- •27. Назначение и роль передач в машинах. Классификация механических передач.
- •28. Фрикционные передачи, принцип действия, классификация, применение. Способы прижатия катков.
- •29. Передачи с цилиндрическими и коническими катками. Сила нажатия тел качения. Передаточные отношения.
- •30. Классификация вариаторов. Принцип действия и основные кинетические соотношения лобового вариатора.
- •31. Принцип действия и основные кинематические соотношения вариатора с раздвижными конусами.
- •32. Торовый вариатор. Принцип действия и основные кинематические соотношения.
- •33. Дисковый вариатор. Принцип действия и основные кинематические соотношения.
- •34. Основы расчета прочности фрикционных пар. Материалы, применяемые для изготовления катков
- •35. Ременные передачи. Принцип действия, классификация, оценка, применение. Материалы плоских приводных ремней
- •36. Клиновые ремни. Конструкция, сравнительная оценка, применение. Расчет клиноременных передач по тяговой способности.
- •37. Силы и напряжениия в ремнях.
- •38. Кинематика ременных передач и критерии расчета. Работа упругого ремня на шкивах.
- •39. Основные геометрические зависимости в ременных передачах.
- •41. Зубчатые передачи. Общие сведения, классификация, применение.
- •42. Виды разрушения зубьев и критерии работоспособности и надежности зубчатых передач. Виды разрушений:
- •43. Расчет зубьев прямозубых цилиндрических колес на изгиб.
- •44. Расчет зубьев цилиндрических прямозубых колес на контактную прочность.
- •45. Особенности расчета и область применения цилиндрических косозубых и шевронных колес.
- •46. Определение расчетных нагрузок при расчете зубчатых передач.
- •48. Передачи коническими зубчатыми колесами. Общие сведения и характеристика. Материалы, применяемые для изготовления зубчатых колес.
- •49. Расчет конических колес на прочность по изгибу и контактным напряжениям.
- •51. Конструкция червячных редукторов.
- •52. Причины выхода из строя червячных передач, критерии их работоспособности и расчета. Материалы, применяемые для изготовления червячных передач.
- •53. Расчет червячных передач на прочность по изгибу и контактным напряжениям.
- •54. Расчетная нагрузка и коэффициент нагрузки при расчете червячных передач.
- •55. Силы, действующие в червячном зацеплении.
- •56. Тепловой расчет и охлаждение червячных передач.
- •57.Глобоидные передачи. Общие сведения. Расчет
- •58. Классификация приводных цепей. Основные характеристики, сравнительная оценка, применение цепных передач
- •59. Основные параметры цепных передач
- •60. Несущая способность и подбор цепных передач
- •61. Передачи винт – гайка. Общие сведения, применение, расчет
- •62. Валы и оси. Общие сведения и основы конструирования. Материалы и обработка осей и валов. Критерии расчета
- •64. Уточненный расчет валов
- •65. Расчет валов на жесткость
- •66. Подшипники качения. Общие сведения, классификация, условные обозначения, применение
- •67. Основные типы подшипников качения, их характеристика. Материалы, применяемые для изготовления подшипников
- •68. Основные критерии работоспособности и расчета подшипников качения
- •69. Распределение нагрузки между телами качения
- •70. Подбор подшипников качения
- •71. Подшипники скольжения, общие сведения, применение. Трение и смазка в подшипниках скольжения
- •72. Условия работы и критерии работоспособности и расчета подшипников скольжения
- •73. Условные расчеты подшипников. Расчет подшипников скольжения при условии жидкостного трения
- •74. Материалы, применяемые для изготовления подшипников скольжения
- •75. Муфты. Общие сведения, назначение, классификация. Глухие муфты. Разновидности и расчет
- •76. Виды несоосности валов. Жесткие компенсирующие муфты. Расчет крестовой муфты
- •77. Расчет муфты со скользящим вкладышем и зубчатой муфты
- •78. Назначение упругих муфт и их динамические свойства.
- •79. Конструкция и расчет упругих муфт.
- •80. Управляемые или сцепные муфты. Общие сведения. Кулачковые и зубчатые (сцепные) муфты.
- •81. Фрикционные муфты. Общие сведения. Расчет дисковых муфт.
- •82. Конические муфты. Расчет.
- •83. Муфты свободного хода. Расчет.
- •84. Цилиндрические шинно-пневматические муфты. Расчет.
- •85. Автоматические самоуправляемые муфты, предохранительные муфты. Основы расчета.
- •86. Центробежные муфты. Расчет.
- •87. Пружины, общие сведения, назначение, классификация, конструкция и основные геометрические параметры витых цилиндрических пружин. Основные расчетные зависимости.
78. Назначение упругих муфт и их динамические свойства.
На рисунке 1 изображена конструкция одной из упругих муфт. Эту конструкцию можно рассматривать как принципиальную схему, общую для всех упругих муфт. Здесь полумуфты 1 и 2 связаны упругим элементом 3 (например, склеены или привулканизированны). Упругая связь полумуфт позволяет:
Компенсировать несоосность валов;
Изменить жестокость системы в целях устранения резонансных колебаний при периодически изменяющейся нагрузке;
Снизить ударные перегрузки.
Одной из основных характеристик упругой муфты является ее жесткость:
,
где Т – крутящий момент, передаваемый муфтой; φ – угол закручивания муфты моментом Т.
В зависимости от характеристики Сφ (рис 2) различают упругие муфты постоянной 1 и переменной 2 жесткости. Для муфт постоянной жесткости:
.
Переменной жесткостью обладают муфты с неметаллическими упругими элементами, материалы которых (резина, кожа и т.д.) не подчиняются закону Гука, а также муфты с металлическими упругими элементами, условия деформирования которых ограничиваются конструкцией. От характеристики жесткости упругой муфты в значительной степени зависит способность машины переносить резкие изменения нагрузки (удары) и работать без резонанса колебаний.
Важным свойством упругой муфты является ее демпфирующая способность, которая характеризуется энергией, необратимо поглощаемой муфтой за один цикл (рис 3): нагрузка (ОА1) и разгрузка (1ВС). Как известно, эта энергия измеряется площадью петли гистерезиса ОА1ВС. Энергия в муфтах расходуется на внутреннее и внешнее трение при деформировании упругих элементов.
Демпфирующая способность упругих муфт способствует снижению динамических нагрузок и затуханию колебаний.
79. Конструкция и расчет упругих муфт.
В машиностроении применяют большое количество разнообразных по конструкции упругих муфт. По материалу упругих элементов эти муфты делят на две группы: муфты с металлическими и неметаллическими упругими элементами.
1) Металлические упругие элементы муфт.
Основные типы металлических упругих элементов муфт изображены на рисунке 1: а – витые цилиндрические пружины; б – стержни, пластины, или пакеты пластин, расположенные по образующей или по радиусу муфты; в – пакеты разрезных гильзовых пружин; г – змеевидные пластинчатые пружины. Эти элементы работают на кручение (рис 1, а) или на изгиб (рис 1, б, в, г).
По сравнению с неметаллическими металлические упругие элементы более долговечны и позволяют изготовлять малогабаритные муфты с большой нагрузочной способностью. Поэтому их применяют преимущественно для передачи больших крутящих моментов. Пакетные упругие элементы вследствие трения между пластинами обладают высокой демпфирующей способностью.
Муфты с металлическими упругими элементами могут быть выполнены с постоянной или переменной жесткостью в зависимости от условий деформирования элемента.
Муфта с цилиндрическими пружинами.
Такие муфты целесообразно применять как упругие звенья в системе валов с зубчатыми колесами или цепными звездочками.
Муфты с цилиндрическими пружинами применяют также для соединения валов. Характеристика муфты с цилиндрическими пружинами изображена на рис 2
Вследствие
предварительного сжатия пружин силой
F1 муфта работает как жесткая до нагрузки
Т1. При этом:
,
где r – радиус расположения пружин; z – число пружин.
При Т>Т1 муфта работает как упругая с постоянной жесткостью. Деформацию пружин λ и напряжение τ в ее витках определяют по формулам:
,
где F – осевая сила, сжимающая пружину; D – средний диаметр пружины; d – диаметр проволоки; i - число рабочих витков пружины; G – модуль сдвига; kв – коэффициент, учитывающий влияние кривизны витков. Угол закручивания муфты при Т>Т1
и жесткость муфты
.
Угол φmax на рис 2 соответствует упору ограничителей, после чего муфта снова становится жесткой. Упор ограничителей должен происходить до соприкасания витков пружины (минимальный зазор между витками около 0,1d).
Условие прочности пружины:
,
где Тmax – момент, соответствующий упору ограничителей.
Для изготовления пружин применяют специальные пружинные стали.
Муфта зубчато-пружинная, или муфта со змеевидными пружинами.
Основная область применения зубчато-пружинных муфт – тяжелое машиностроение (прокатные станы, турбины, поршневые двигатели и т.п.).
Число зубьев обычно принимают в пределах 50…100.
Муфты могут компенсировать несоосность валов.
2) Неметаллические упругие элементы муфт.
Основным материалом неметаллических упругих элементов является резина. Она обладает следующими положительными качествами:
Высокой эластичностью;
Высокой демпфирующей способностью вследствие внутреннего трения.
Недостатки:
Меньшая долговечность, чем стальных;
Меньшая прочность, которая приводит к увеличению габаритов муфт.
Муфты с резиновыми упругими элементами широко распространены во всех областях машиностроения для передачи малых и средних крутящих моментов.
Основные типы резиновых упругих элементов муфт и схемы их нагружения изображены на рис 3. При выборе типа упругого элемента учитывают следующее: упругие элементы с равномерным напряженным состоянием по объему обладают большей энергоемкостью; кручение и сдвиг дают большую энергоемкость, чем изгиб и сжатие; выгодно, чтобы упругий элемент занимал большую долю объема муфты. Этим условиям в большей степени удовлетворяют типы упругих элементов, показанные на рис 3, ж, з, и.
Муфта с резиновой звездочкой.
Состоит из двух полумуфт с торцовыми выступами и резиновой звездочки, зубья которой расположены между выступами. Зубья звездочки работают на сжатие. При передаче момента в каждую сторону работает половина зубьев. Муфта стандартизирована и широко применяется для соединения быстроходных валов. Муфта компактна и надежна в эксплуатации.
Недостатки – при разработке и сборке необходимо смещение валов в осевом направлении.
Работоспособность резиновой звездочки определяется напряжением смятия и может быть рассчитана по формуле:
,
где z – число зубьев звездочки. Принимают [σсм] = 2…2,5, МПа.
Муфта упругая втулочно-пальцевая (МУВП).
Благодаря легкости изготовления и замены резиновых элементов эта муфта получила распространение, особенно в приводах от электродвигателей с малыми и средними крутящими моментами. Из-за сравнительно небольшой толщины втулок муфты обладают малой податливостью и применяются в основном для компенсации несоосности валов в небольших пределах.
Для проверки прочности рассчитывают пальцы на изгиб, а резину – по напряжениям смятия на поверхности соприкасания втулок с пальцами. При этом полагают, что все пальцы нагружены одинаково, а напряжения смятия распределены равномерно по длине втулки:
,
где z – число пальцев. Рекомендуют принимать [σсм] = 1,8…2 МПа.
Муфта с упругой оболочкой.
Упругий элемент муфты, напоминающей автомобильную шину, работает на кручение. Это придает муфте большую энергоемкость, высокие упругие и компенсирующие свойства. Муфта стандартизована и получила широкое распространение.
Нагрузочная способность муфты ограничивается потерей устойчивости и усталостью резиновой оболочки. В первом приближении можно рекомендовать расчет прочности оболочки по напряжениям сдвига в сечении около зажима (по D1):
.
По
экспериментальным данным [τ]
0,4 МПа.