
- •1. Классификация деталей и узлов машин. Основные направления в развитии конструкции машин.
- •2. Виды нагрузок, действующие на детали машин.
- •3. Допускаемые и предельные напряжения. Запас прочности. Табличный и дифференциальный методы определения допускаемых напряжений и запаса прочности.
- •4. Определение допускаемых напряжений для деталей, изготовленных из пластических, малопластичных и хрупких материалов при действии статической нагрузки.
- •5. Основные критерии работоспособности и расчёта деталей машин.
- •7. Классификация соединений и критерии их работоспособности.
- •8. Конструкция, классификация и область применения заклепочных соединений. Разновидности заклепок, материалы, применяемые для изготовления заклепок.
- •9. Расчет заклепочных соединений.
- •10. Сварные соединения, общие сведения, классификация, применение. Расчет сварных соединений встык при нагружении центрально-приложенной силой и моментом.
- •11. Соединения внахлестку. Расчет лобовых соединений швов, нагруженных центрально - приложенной силой и моментом.
- •12. Расчет фланговых швов при нагружении растягивающей силой и моментом.
- •13. Соединения контактной сваркой. Общие сведения, расчет.
- •14. Соединение деталей с гарантированным натягом. Общие сведения, применение. ___Усилия запрессовки и распрессовки.
- •15. Материалы резьбовых соединений. Предохранение резьбовых соединений от самоотвинчивания.
- •16. Момент завинчивания. Кпд и условия самоторможения.
- •17. Резьбовые соединения, основные понятия и определения. Типы резьб. Взаимодействие между винтом и гайкой.
- •18. Расчет винтовых соединений при нагруженном силами в плоскости стыка.
- •20. Расчет групповых резьбовых соединений, работающих на сдвиг.
- •21 .Расчет винтовых соединений при действии центральной отрывающей силы.
- •22. Расчет резьбовых соединений, нагруженных моментом и силой, раскрывающими стык деталей.
- •23. Расчет винтов, подверженных переменной нагрузке.
- •24. Шпоночные соединения. Классификация, расчет, применение.
- •26. Соединение штифтами. Конструкция, классификация применение.
- •27. Назначение и роль передач в машинах. Классификация механических передач.
- •28. Фрикционные передачи, принцип действия, классификация, применение. Способы прижатия катков.
- •29. Передачи с цилиндрическими и коническими катками. Сила нажатия тел качения. Передаточные отношения.
- •30. Классификация вариаторов. Принцип действия и основные кинетические соотношения лобового вариатора.
- •31. Принцип действия и основные кинематические соотношения вариатора с раздвижными конусами.
- •32. Торовый вариатор. Принцип действия и основные кинематические соотношения.
- •33. Дисковый вариатор. Принцип действия и основные кинематические соотношения.
- •34. Основы расчета прочности фрикционных пар. Материалы, применяемые для изготовления катков
- •35. Ременные передачи. Принцип действия, классификация, оценка, применение. Материалы плоских приводных ремней
- •36. Клиновые ремни. Конструкция, сравнительная оценка, применение. Расчет клиноременных передач по тяговой способности.
- •37. Силы и напряжениия в ремнях.
- •38. Кинематика ременных передач и критерии расчета. Работа упругого ремня на шкивах.
- •39. Основные геометрические зависимости в ременных передачах.
- •41. Зубчатые передачи. Общие сведения, классификация, применение.
- •42. Виды разрушения зубьев и критерии работоспособности и надежности зубчатых передач. Виды разрушений:
- •43. Расчет зубьев прямозубых цилиндрических колес на изгиб.
- •44. Расчет зубьев цилиндрических прямозубых колес на контактную прочность.
- •45. Особенности расчета и область применения цилиндрических косозубых и шевронных колес.
- •46. Определение расчетных нагрузок при расчете зубчатых передач.
- •48. Передачи коническими зубчатыми колесами. Общие сведения и характеристика. Материалы, применяемые для изготовления зубчатых колес.
- •49. Расчет конических колес на прочность по изгибу и контактным напряжениям.
- •51. Конструкция червячных редукторов.
- •52. Причины выхода из строя червячных передач, критерии их работоспособности и расчета. Материалы, применяемые для изготовления червячных передач.
- •53. Расчет червячных передач на прочность по изгибу и контактным напряжениям.
- •54. Расчетная нагрузка и коэффициент нагрузки при расчете червячных передач.
- •55. Силы, действующие в червячном зацеплении.
- •56. Тепловой расчет и охлаждение червячных передач.
- •57.Глобоидные передачи. Общие сведения. Расчет
- •58. Классификация приводных цепей. Основные характеристики, сравнительная оценка, применение цепных передач
- •59. Основные параметры цепных передач
- •60. Несущая способность и подбор цепных передач
- •61. Передачи винт – гайка. Общие сведения, применение, расчет
- •62. Валы и оси. Общие сведения и основы конструирования. Материалы и обработка осей и валов. Критерии расчета
- •64. Уточненный расчет валов
- •65. Расчет валов на жесткость
- •66. Подшипники качения. Общие сведения, классификация, условные обозначения, применение
- •67. Основные типы подшипников качения, их характеристика. Материалы, применяемые для изготовления подшипников
- •68. Основные критерии работоспособности и расчета подшипников качения
- •69. Распределение нагрузки между телами качения
- •70. Подбор подшипников качения
- •71. Подшипники скольжения, общие сведения, применение. Трение и смазка в подшипниках скольжения
- •72. Условия работы и критерии работоспособности и расчета подшипников скольжения
- •73. Условные расчеты подшипников. Расчет подшипников скольжения при условии жидкостного трения
- •74. Материалы, применяемые для изготовления подшипников скольжения
- •75. Муфты. Общие сведения, назначение, классификация. Глухие муфты. Разновидности и расчет
- •76. Виды несоосности валов. Жесткие компенсирующие муфты. Расчет крестовой муфты
- •77. Расчет муфты со скользящим вкладышем и зубчатой муфты
- •78. Назначение упругих муфт и их динамические свойства.
- •79. Конструкция и расчет упругих муфт.
- •80. Управляемые или сцепные муфты. Общие сведения. Кулачковые и зубчатые (сцепные) муфты.
- •81. Фрикционные муфты. Общие сведения. Расчет дисковых муфт.
- •82. Конические муфты. Расчет.
- •83. Муфты свободного хода. Расчет.
- •84. Цилиндрические шинно-пневматические муфты. Расчет.
- •85. Автоматические самоуправляемые муфты, предохранительные муфты. Основы расчета.
- •86. Центробежные муфты. Расчет.
- •87. Пружины, общие сведения, назначение, классификация, конструкция и основные геометрические параметры витых цилиндрических пружин. Основные расчетные зависимости.
Какую работу нужно написать?
1. Классификация деталей и узлов машин. Основные направления в развитии конструкции машин.
Деталь – это часть машины, изготовленная без применения сборочных операций (вал, гайка, шкив, винт и т.д.).250
Комплексы совместно работающих деталей, представляющие собой конструктивно – обособленные единицы и обычно объединённые общим назначением, называются узлами или сборочными единицами.
Детали машин делят на следующее части:
1)Группа соединений (неразъёмные: клёпаные, сварочные, паяные; разъёмные: с помощью винтов, шпонок, клиньев и т. п.);
2)Передаточные механизмы (передачи: зацеплением, трением; валы и муфты);
3)Детали, обслуживающие вращательное движение (оси, валы, шейки, пяты, муфты и т.д.);
4)Шарнирно – рычажные и кулачковые механизмы (кривошипы, ползуны, шатуны, коромысла, направляющие, кулиса; кулачки, эксцентрики, ролики.
5)Упругие элементы: пружины или рессоры;
6)Маховики, грузы, бабы, шаботы;
7)Устройства для защиты от загрязнения и для смазывания;
8)Детали и механизмы управления.
Целевая установка курса заключается в том, чтобы исходя из заданной работы деталей и узлов машин дать методы, правила и нормы их проектирования, обеспечивающие выбор наиболее рациональных материалов, форм, размеров, степени точности, качества поверхности, а также технических условий изготовления.
Основные направления в развитии конструкции машин:
Замена механизмов с возвратно-поступательным движением механизмами с равномерным вращательным движением. Примеры замены: паровая и газовая турбины, заменившие при больших мощностях и скоростях поршневые двигатели; центробежные, зубчатые и лопастные насосы, а также турбокомпрессоры, вытесняющие поршневые насосы и компрессоры; станки вращательного движения, заменившие станки ударного действия, и т.д.
Применение узловых конструкций:
- разделение машин на части
- агрегатные конструкции
- блочные конструкции
Разделение на узлы «агрегаты – блоки» дает следующие преимущества:
При компоновке машины из самостоятельных узлов разработка различных конструкторских вариантов или модификаций, их испытание, а затем и внедрение в производство могут каждый раз ограничиваться одним узлом, не затрагивая остальных – облегчает процесс модернизации машин.
Любая конструкция позволяет на базе небольшого числа агрегатов или блоков создавать машины различного типа.
Узловая конструкция сокращает цикл сборочных работ, т.к. все узлы можно собирать и испытывать одновременно и готовыми подавать на общий монтаж.
Узловая конструкция облегчает ремонт машин, который может быть сведен к замене одних узлов другими – новыми или отремонтированными.
Применение различных типов приводов.
Снижение веса машин при улучшении их качества. Это важно в 2-х направлениях:
Вес машины вместе с коэффициентом использования металла определяет вес металла пошедшего на изготовление машины;
Вес транспортных машин определяет транспортные расходы.
2. Виды нагрузок, действующие на детали машин.
Нагрузки на детали машин и напряжения в них, как известно, могут быть постоянными и переменными по времени.
Нагрузки на детали машин делятся на:
номинальные
расчетные
Расчетная нагрузка Ррасч определяется произведением номинальной нагрузки и коэффициента нагрузки К:
К учитывает динамичность нагрузки и некоторые другие факторы.
По характеру действия нагрузки делят на:
с
татические
– длительно действующие на деталь, но
постоянно и медленно изменяющиеся в
период снятия и приложения нагрузки.
повторные или переменные установившегося и неустановившегося режимов.
нагрузки малой продолжительности или ударные с коротким циклом изменения напряжения.
Детали, подверженные постоянным напряжениям в чистом виде, в машинах почти не встречаются. Постоянная, неподвижная в пространстве нагрузка вызывает во вращающихся деталях (валах, осях, зубьях зубчатых колёс) переменные напряжения. Однако некоторые детали работают с мало изменяющимися напряжениями, которые при расчёте можно принимать за постоянные. К таким деталям могут быть отнесены детали с большими нагрузками от силы тяжести (в транспортных и подъёмно – транспортных машинах), детали с большой начальной затяжкой (заклёпки, часть крепёжных винтов и пружин) и детали с малым общим числом плавных нагружений.
Переменные напряжения, прежде всего, характеризуются циклом изменения напряжений (отнулевым, знакопеременным симметричным и ассиметричным знакопостоянным или знакопеременным циклами).
Нагрузки могут изменяться плавно или прикладываться внезапно (удары). Существенные ударные нагрузки действуют в машинах ударного действия и в транспортных машинах. Удары также бывают связаны с работой механизмов(переключением зубчатых колёс и кулачковых муфт на ходу, использованием упоров и т.д.), с погрешностями изготовления и увеличенными зазорами в сопряжениях. Очень опасны удары при авариях. Основная характеристика сопротивления удару – ударная вязкость.
Статическим нагрузкам соответствуют статические напряжения, неизменяющиеся в течение длительного времени ни по величине, ни по направлению: заклепки, часть крепежных винтов и пружин, элементы котлов и резервуаров.
Переменным нагрузкам соответствуют переменные напряжения, которые характеризуются циклом изменения напряжения.
В деталях машин возникают следующие циклы:
1) Пульсационный или отнулевой цикл, при котором напряжения изменяются от 0 до max и обратно до нуля (зубья зубчатых колес, работающих в одну сторону, штоки, толкатели и шатуны тихоходных машин, малонагруженные при обратном ходе).
Вычислим некоторые параметры этого цикла:
среднее напряжение цикла:
амплитуда:
коэффициент симметрии:
Растяжение – со знаком «+», сжатие – с «–», кручение – «+» или «–» выбирается условно в зависимости от выбранного напряжения.
2) Знакопеременный симметричный цикл, при котором напряжения изменяются от отрицательного до такого же по абсолютной величине положительного значения (значение изгиба при вращающихся валах).
Симметричный цикл:
Параметры:
среднее напряжение
амплитуда
коэффициент симметрии
σ-1; τ-1 – пределы выносливости при симметричном цикле.
3) Знакопостоянный (винты и пружины) или знакопеременный (большинство деталей); ассиметричные циклы – наиболее общее понятие.
Ассиметричные циклы – частные случаи динамических переменных нагрузок. При расчетах ударные нагрузки приводятся к статическим через коэффициент динамичности.