
- •Методические указания к Госам Автор Юршевич м.С и Потылицын в.П. Оглавление
- •Вопрос№1 Корни и канонические разложения многочленов над полями вещественных и комплексных чисел. Неприводимые многочлены над полями r и c.
- •Вопрос№2 Теоремы об а)умножении определителей и б)о ранге матрицы.
- •Вопрос№3 а)Правило Крамера, б)Th Кронекера-Капелли и в)Th-мы об однородных уравнениях.
- •Вопрос№4 Скалярное, векторное и смешанное произведение векторов. B) Линейные и унитарные пространства, базы, размерность, подпространства.
- •Вопрос№5 а)Линейное преобразование, его б)матрицы, в)характеристические корни, собственные значения и собственные векторы. Г)Жорданова форма матрицы.
- •Вопрос№6 а)Уравнения прямых и плоскостей в пр-стве. Канонические уравнения б) кривых и в) поверхностей 2-го порядка.
- •Вопрос№8 Th о функциональной полноте ив.
- •Вопрос№9 а)предел посл-сти и б)предел ф-ции в точке.
- •Вопрос№10 Непрерывность ф-ции а) в точке и на отрезке, б) точки разрыва 1-го и 2-го рода.
- •Вопрос№11 Дифференцируемость и дифференциалы ф-ций 1-й и многих переменных. Инвариантность формы 1-го дифференциала.
- •Дифференциал функции многих переменных.
- •Теорема об инвариантной форме первого дифференциала.
- •Вопрос№12 Формула Лагранжа конечных прирашений.
- •Вопрос№13 Формула Тейлора с остаточным членом в формах Пеано и Лагранжа.
- •Вопрос№14
- •Вопрос№15 Числовые и функциональные последовательности и ряды. Равномерная сходимость.
- •Сходимость функциональных последовательностей и рядов
- •Равномерная сходимость
- •Вопрос №16 Теория о неявной функции
- •Вопрос№17 а) Градиент, касательная пл-сть и нормаль в точке поверхности. Б) Уравнения касательной и нормали к кривой.
- •Вопрос№19
- •Определенный интеграл.
- •Вопрос№20 Формула Ньютона-Лейбница
- •Вопрос№21 Кратные интегралы. Теорема Фубини. Поверхностные и криволинейные интегралы. Формулы Грина, Остроградского, Стокса.
- •Вопрос№23 Разложение функции по ортогональной системе функций, ряд Фурье, условие замкнутости ортогональной системы (равенство Парсеваля-Стеклова).
- •Вопрос№24 Метрика, метрическое пространство. Открытые и замкнутые множества.
- •Вопрос№25 Фундаментальная последовательность, полное пространство.
- •Вопрос№26 Принцип сжимающих отображений.
- •Вопрос№27 Компактное пространство и множество. Критерий компактности в .
- •Вопрос№29 Определение голоморфной функции, уравнения Коши-Римана.
- •Уравнение Коши-Римана
- •Вопрос№30 Интегральная теорема Коши. Интегральная формула Коши.
- •Вопрос№32_1 а) Классификация изолированных особых точек. Б)Теорема о вычетах. В)Ряд Лорана. Д)Теорема Руше и принцип аргумента.
- •Вопрос№32_2
- •Вопрос№33_1 ду простейших типов и их инегрирование.
- •Вопрос№34 Теорема Коши-Пикара существования и единственности решения ду 1-го порядка.
- •Для любой внутренней точки найдется решение уравнения (8.2.2), удовлетворяющее условию при .
- •Если два решения и уравнения (8.2.2) совпадают хотя бы для одного значения , т.Е. , то эти решения совпадают для всех .
- •Вопрос№35 Линейные ду n-го порядка с постоянными коэффициентами.
- •Вопрос№36_1 Устойчивость решения линейных систем ду 2-го порядка. Классификация особых точек (узел, седло, фокус, центр и тд.)
- •Вопрос№36_2
- •Критерий Гурвица
- •Вопрос№37 Классификация ду в частных производных 2-го порядка.
- •Вопрос№39 Метод разделения переменных.
- •Вопрос№41 Точные методы решения систем линейных алгебраических уравнений: метод исключения Гаусса, метод исключения с выбором главного элемента. Сравнение методов.
- •Вопрос№42 Метод простой итерации решения систем линейных алгебраических уравнений. Условие сходимости.
- •Вопрос№43 Метод простой итерации вычисления корня нелинейного уравнения. Условие сходимости. Метод Ньютона: формула, геометрическая интерпретация, условия сходимости.
- •Вопрос№44
- •Вопрос№45_1 Явная схема краевой задачи для уравнения теплопроводности. Аппроксимация. Гармонический анализ.
- •Вопрос№45_2
- •Гармонический анализ.
- •Вопрос№47 Понятие корректности, устойчивости и сходимости разностной задачи. Теорема эквивалентности.
- •Вопрос№48 Классификация интерфейсов вычислительных систем.
- •Вопрос№49 Основные функции операционной системы.
- •Вопрос№50
- •Вопрос№51_1 Алгоритмы сортировок (элементарные методы сортировки, быстрая сортировка Хоара, сортировка слиянием), поиска, рекурсий.
- •Сортировка Выбором
- •Сортировка Вставкой
- •Пузырьковая Сортировка
- •Быстрая сортировка
- •Слияние
- •Вопрос№51_2
- •Рекурсия
- •Вопрос№52 Основы объектно-ориентированного программирования. (инкапсул., полиморфизм, наследов.)
- •Вопрос№53 Симплекс метод. Постановка задачи. Способы решения Каноническая форма:
- •Вопрос№54_1 Матричные игры. Решение игры в смешанных стратегиях.
- •Вопрос№54_2
- •Теорема(Джона Фон Неймана)
- •Вопрос№55 Основные требования к организации баз данных как хранилищ корпоративно используемых данных. Способы и средства достижения этих требований.
- •Вопрос№56_1 Технология проектирования баз данных: этапы проектирования, модели представления предметной области, синтаксические модели данных. Этапы разработки базы данных
- •Вопрос№56_2
- •Вопрос№57 Классическое определение вероятности. Условная вероятность, независимые события, теоремы сложения и умножения.
- •Теорема сложения
- •Вопрос№58 Дискретные и непрерывные случайные величины, определения и свойства функции и плотности распределения.
- •Вопрос№59 Математическое ожидание и дисперсия случайной величины. Моменты.
- •Своиства
- •Вопрос№60 Сходимость по вероятности, неравенство Чебышева, закон больших чисел в формах Чебышева и Бернулли.
- •Вопрос№61 Точечные статистические оценки: несмещенность, состоятельность, эффективность. Определение и свойства выборочного среднего и выборочной дисперсии.
- •Практика Диффуры.
- •1.Найти частное решение уравнения в точке .
- •3. Алгоритм нахождения собственных значений и собственных векторов
- •5. Рассмотрим несколько примеров несобственных интегралов первого рода.
- •6.Рассмотрим несколько примеров на вычисление несобственных интегралов второго рода.
- •7.Рассмотрим примеры использования признака сравнения несобственных интегралов.
- •9. Вычисление пределов. (правили Лопиталя)
- •11.Исследовать функцию и построить ее график.
- •12. Исследовать функцию и построить ее график.
- •13. Исследовать функцию и построить ее график.
- •15. Найти полный дифференциал функции
- •16. Найти уравнения касательной плоскости и нормали к поверхности
- •19. Вычисление двойных интегралов
- •20. Вычислить интеграл
- •22. Найти общее решение дифференциального уравнения .
- •23. Уравнения с разделяющимися переменными.
- •24. Уравнения, приводящиеся к однородным.
- •Разделяем переменные:
- •25.Решить уравнение
- •26. Решить уравнение
- •28. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •29.Решить уравнение
- •30. Найти общее решение системы уравнений:
- •31. Сходимость рядов.
- •32. Теория вычетов
- •33. Криволинейные интегралы
- •34.Устойчивость оду
- •35.Даны вершины треугольника a(1,-2,-4), b(3,1,-3), c(5,1,-7). Составить уравнение высоты, проведенной из вершины b. И вычислить площадь.
- •36.Проверить компланарны ли вектора a(2,0,1), b(5.3.-3), c(3,3,10).
15. Найти полный дифференциал функции
16. Найти уравнения касательной плоскости и нормали к поверхности
в точке М(1, 1, 1).
касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:
.
Уравнение нормали к поверхности в этой точке:
Уравнение касательной
плоскости:
Уравнение нормали:
17. Найти экстремум функции f(x, y) = xy, если уравнение связи:
Выражение u = f(x, y) + (x, y) называется функцией Лагранжа.
2x + 3y
– 5 = 0
Таким
образом, функция имеет экстремум в точке
.
18.Вычислить
производную функции z
= x2
+ y2x
в точке А(1, 2) по направлению вектора
.
В (3, 0).
Решение. Прежде всего необходимо определить координаты вектора .
=(3-1;
0-2) = (2; -2) = 2
.
Далее определяем
модуль этого вектора:
=
Находим частные
производные функции z в
общем виде:
Значения этих величин
в точке А :
Для нахождения направляющих косинусов
вектора
производим следующие преобразования:
=
За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.
Отсюда получаем
значения направляющих косинусов вектора
:
cos
=
;
cos
= -
Окончательно получаем:
- значение производной заданной функции
по направлению вектора
.
19. Вычисление двойных интегралов
Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a < b), y = (x), y = (x), где и - непрерывные функции и
, тогда
Пример. Вычислить
интеграл
,
если область
ограничена линиями: y = 0,
y = x2,
x = 2.
y
4
0 2 x
=
=
Теорема. Если
функция f(x,
y) непрерывна в
замкнутой области ,
ограниченной линиями y
= c, y
= d (c
< d), x
= (y),
x = (y)
((y)
(y)),
то
Пример. Вычислить
интеграл
,
если область
ограничена линиями y = x,
x = 0, y = 1, y
= 2.
y
y = x
2
1
0 x
Пример. Вычислить
интеграл
,
если область интегрирования
ограничена линиями х = 0, х = у2, у =
2.
=
=
Пример. Вычислить
двойной интеграл
,
если область интегрирования ограничена
линиями ху=1, у =
,
х = 2.
2.
3.
20. Вычислить интеграл
21. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1; x + y + z =3 и плоскостью ХОY.
Пределы интегрирования:
по оси ОХ:
по оси ОY: x1
= -1; x2 = 1;
22. Найти общее решение дифференциального уравнения .
Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:
Теперь
интегрируем:
- это общее решение исходного
дифференциального уравнения. Допустим,
заданы некоторые начальные условия: x0
= 1; y0 = 2, тогда имеем
При
подстановке полученного значения
постоянной в общее решение получаем
частное решение при заданных начальных
условиях (решение задачи Коши).