- •Гидравлика
- •Краткая история развития гидравлики
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 4. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Лекция 5. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 6. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 7. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 8. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 9. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Измерение скорости потока и расхода жидкости
- •Лекция 10. Режимы течения жидкостей
- •Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 11. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 12. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Потери напора при ламинарном течении жидкости
- •Потери напора при турбулентном течении жидкости
- •Лекция 13. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Истечение под уровень
- •Истечение через насадки при постоянном напоре
- •Лекция 15. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Лекция 16. Гидравлический удар в трубопроводах
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
Закон жидкостного трения – закон Ньютона
Если в равномерно движущемся потоке жидкости рассмотреть два соседних слоя с ординатами y1 и y2, расположенных на расстоянии dy друг от друга, и скорость первого из них обозначить u1, а скорость другого u2 , то разница между ними составит du. Тогда можно записать
Эта величина называется градиентом скорости по сечению потока или поперечным градиентом скорости. Он показывает, как меняются скорости слоёв жидкости по сечению потока.
Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона
где T – силы вязкого трения;
S – площадь трения;
μ
– коэффициент вязкого трения.
Величина μ в этом выражении является динамическим коэффициентом вязкости, равным
или
;
где τ – касательное напряжение в жидкости (зависит от рода жидкости).
Физический смысл коэффициента вязкого трения - число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.
Единицы измерения: [Н·с/м2], [кГс·с/м2], [Пз]{Пуазейль}, 1Пз=0,1Н·с/м2.
На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности
.
Единицы измерения: [м2/c], [cм2/c], [Ст] {стокс}, [сСт] {сантистокс}, 1Ст=100сСт {1Ст=1 cм2/c}.
Анализ свойства вязкости
Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.
Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:
где μt – коэффициент динамической вязкости при заданной температуре,
μ0 – коэффициент динамической вязкости при известной температуре (для минеральных масел при 50 0C),
T – заданная температура,
T0 –температура, при которой измерено значение μ0 (50 0C для минеральных масел),
kt – коэффициент, для минеральных масел равный 0,02-0,03,
e – основание натурального логарифма равное 2,718282.
Зависимость
относительного коэффициента динамической
вязкости
от давления описывается формулой
где μP – коэффициент динамической вязкости при заданном давлении,
μ0 – коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
P – заданное давление,
P0 –давление, при которой измерено значение μ0,
kP – коэффициент, для минеральных масел равный 0,002-0,003.
В
лияние
давления на вязкость жидкости проявляется
только при высоких давлениях.
Для примера приведём значения кинематического коэффициента вязкости n для некоторых жидкостей: масла индустриальные (по ГОСТ 20799-75) при температурах 50 0C: И-5А – 4-5 сСт, И-12А – 10-14 сСт, И-40А – 35-45 сСт; вода пресная при 20 0C - 0,0101Ст; ртуть при 150C 0,0011- Ст, сталь жидкая при 1550 0C – 0,0037 Ст.
Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Жидкости, которые подчиняются описанному закону жидкостного трения Ньютона, называются ньютоновскими жидкостями. Однако есть жидкости, трение в которых описывается другими закономерностями.
