- •Гидравлика
- •Краткая история развития гидравлики
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 4. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Лекция 5. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 6. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 7. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 8. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 9. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Измерение скорости потока и расхода жидкости
- •Лекция 10. Режимы течения жидкостей
- •Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 11. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 12. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Потери напора при ламинарном течении жидкости
- •Потери напора при турбулентном течении жидкости
- •Лекция 13. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Истечение под уровень
- •Истечение через насадки при постоянном напоре
- •Лекция 15. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Лекция 16. Гидравлический удар в трубопроводах
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
Лекция 12. Турбулентное течение жидкости
Напомним, что турбулентное движение жидкости отличается интенсивным вихреобразованием, приводящим к перемешиванию слоёв. В потоке наблюдаются постоянные пульсации давлений и скоростей, как по величине, так и по направлению. Турбулентное течение имеет неустановившийся характер, а траектории движения частиц жидкости постоянно и хаотически меняются. На практике такое движение встречается достаточно часто при высоких скоростях потока и малой вязкости жидкости. Вследствие того, что при турбулентном течении потока нет слоистости, закон трения Ньютона неприменим. По причине сложности турбулентного движения и его аналитического исследования, пока нет достаточно строгой теории этого течения. Существует полуэмпирическая приближённая теория Прандтля, элементы которой будут затронуты ниже, при рассмотрении вопроса о вязком трении в турбулентных потоках.
Потери энергии (потери напора на трение) при турбулентном течении жидкости больше, чем при ламинарном, из-за значительных потерь на вихреобразование, перемешивание и изменение траекторий.
В
гидравлике для практических расчётов
турбулентного течения жидкости в трубах
используют экспериментальные
систематизированные данные, применяемые
на основе теории подобия. Основной
расчётной формула для определения
потерь напора в круглых трубах является
уже известная формула Дарси
,
однако коэффициент
,
в данном случае это коэффициент
на трение по длине при турбулентном
течении,
и он существенно отличается от
,
используемом при ламинарном движении
жидкости.
Вязкое трение при турбулентном движении
Выделим в турбулентном
потоке, движущимся параллельно твёрдой
стенке, элементарную площадку ΔS
и определим касательное напряжение τ,
возникающее за счёт пульсаций скоростей
.
Через площадку в перпендикулярном
потоку направлении, проходит расход
жидкости
.
Масса жидкости, проходящая через площадку за время Δt, равна
За счёт составляющей
пульсаций скорости
эта масса получит приращение количества
движения
.
Приращение количества движения равно импульсу силы, т.е.
;
где сила
и тогда касательное напряжение будет
равно
,
а его осреднённое по времени значение можно представить в виде
.
Определённое таким
образом касательное напряжение вычислить
очень трудно из-за неизвестных значений
и
,
поэтому, чаще всего рассматривается
приближённое решение.
Представим, что
малый объём жидкости, находящийся в
точке A
и имеющий скорость
,
в результате турбулентного перемешивания
переместился в точку B,
расположенную на расстоянии l
от точки A
приобрёл скорость
.
Будем считать, что пульсации скоростей и пропорциональны приращению скорости рассматриваемого объёма жидкости, т.е.
,
.
Тогда можно представить в виде
,
где коэффициент
пропорциональности включён в величину
l,
знак
совпадает со знаком производной
.
Величина l
носит называние путь
перемешивания.
Последнее уравнение обычно преобразовывают к виду
,
где СТ – коэффициент перемешивания, или коэффициент турбулентного обмена который равен
.
Полученное уравнение
аналогично уравнению касательного
напряжения при ламинарном режиме.
Коэффициент CТ
значительно превышает по величине
динамическую вязкость
и зависит от числа Рейнольдса.
