- •Часть II
- •Общие сведения…………………………………………………………. 46
- •Общие сведения………………………………………………………… 51
- •Общие сведения……………………………………………………………. 80
- •Основные сокращения
- •1. Обратные связи в аэу
- •1.1. Основные понятия
- •1.2. Влияние ос на передаточные свойства устройства
- •1.3. Влияние обратной связи на входное и выходное сопротивления
- •1.4. Влияние обратной связи на стабильность коэффициента передачи
- •1.5. Влияние обратной связи на амплитудно-частотную, фазочастотную и переходную характеристики
- •1.6. Влияние обратной связи на внутренние помехи
- •1.7. Влияние обратной связи на нелинейные искажения
- •1.7. Устойчивость устройств с обратной связью
- •2. Режимы работы и цепи питания усилительных элементов
- •2.1. Режимы работы усилительных элементов
- •2.1.1. Режим а
- •2.1.2. Режим в
- •2.1.3. Режим с
- •2.1.4. Режим d
- •2.2. Температурная нестабильность режима биполярного транзистора
- •2.3. Температурная нестабильность режима полевого транзистора
- •2.4. Методы стабилизации
- •2.5. Обобщенная схема задания и стабилизации рабочей точки
- •2.6. Схема эмиттерной стабилизации
- •2.7. Схема коллекторной стабилизации
- •2.8 Цепи питания полевых транзисторов
- •2.8.1. Цепи питания с фиксацией напряжения на затворе
- •2.8.2. Схемы истоковой стабилизации
- •2.9. Генераторы стабильного тока
- •3. Каскады предварительного усиления
- •3.1. Особенности каскадов предварительного усиления
- •3.2. Резисторный каскад на биполярном транзисторе
- •3.2.1. Принципиальная и эквивалентная схемы
- •3.2.2. Область средних частот
- •3.2.3. Область нижних частот и больших времен
- •3.2.4. Область верхних частот и малых времен
- •3.3. Коррекция амплитудно – частотных и переходных характеристик
- •3.3.1. Общие сведения
- •3.3.2. Схема эмиттерной высокочастотной коррекции
- •3.3.3. Схема индуктивной высокочастотной коррекции
- •3.3.4. Схема низкочастотной коррекции
- •3.4. Дифференциальный каскад
- •3.4.1. Общие сведения
- •3.4.2. Принцип действия
- •3.4.3. Параметры дифференциального каскада
- •3.5. Усилительные каскады на составных транзисторах
- •3.5.1. Общие сведения
- •3.5.2. Резисторный каскад на составном транзисторе
- •3.6. Усилительные каскады с динамическими нагрузками
- •4. Устойчивость операционных усилителей
- •4.1. Устойчивость многокаскадного усилителя постоянного тока
- •4.2. Условия устойчивости операционных усилителей
- •4.3. Коррекция ачх операционных усилителей
- •4.4. Косвенные признаки относительной устойчивости
- •4.5. Влияние емкости нагрузки и входной емкости на устойчивость оу
- •4.6. Частотная коррекция в цепи ос
- •5. Обработка аналоговых сигналов операционными усилителями
- •5.1. Инвертирующий усилитель
- •5.2. Неинвертирующий усилитель
- •5.3. Суммирующий усилитель
- •5 .4. Дифференциальный усилитель
- •5 .5. Интегратор
- •5.5. Дифференциатор
- •5.7. Логарифмирующие и антилогарифмирующие усилители
- •6. Перемножители напряжений
- •Общие сведения
- •6.2. Перемножители с переменной крутизной
- •6.3. Интегральные перемножители и их параметры
- •Особенности применения интегральных перемножителей
- •7. Компараторы напряжения
- •7.1. Назначение, параметры
- •7.2. Особенности применения полупроводниковых компараторов
- •7.3. Специализированные компараторы на операционных усилителях
- •Однопороговые компараторы
- •Регенераторные компараторы
- •Двухпороговые компараторы
- •8. Литература
2.5. Обобщенная схема задания и стабилизации рабочей точки
К онкретные схемы задания и стабилизации рабочей точки, которые будут рассмотрены ниже, являются частными случаями обобщенных схем, представленных на рис.2.8. Здесь - полные сопротивления на постоянном токе цепей, внешних относительно соответствующих электродов; - эквивалентные источники ЭДС, определяемые напряжениями в точках 1,2 и 3 при отключенном транзисторе. Путем подбора значений внешних ЭДС и сопротивлений необходимо обеспечить не только исходный режим работы при комнатной температуре, но и стабильность этого режима в диапазоне температур, т.е. обеспечить требуемые значения коэффициентов нестабильности и (2.18) и (2.19).
Анализ схем, изображенных на рис.2.8 и рис.2.9 позволил получить расчетные состояния для исходного режима работы УЭ и коэффициентов нестабильности.
Для БТ (рис.2.8 ,а и рис.2.9, а) при
(2.20)
или
, (2.21)
, (2.22)
. (2.23)
Для ПТ (рис.2.7,б и рис.2.8,б):
, (2.24)
или
, (2.25)
, (2.26)
. (2.27)
Здесь - координаты рабочей точки (точки покоя) при комнатной температуре; - значение параметров также при комнатной температуре.
В ыражения (2.20)… …(2.27) позволяют рас-считать величины внешних элементов по заданному или выбранному исходному режиму работы и его стабильности.
2.6. Схема эмиттерной стабилизации
Схема эмиттерной стабилизации (рис.2.10) является самой распространенной схемой. Стабилизация осуществляется за счет последовательной ООС по току, возникающей из-за наличия в схеме резистора . Если , то потенциал базы относительно общего провода жестко фиксирован, т.е. не зависит от параметров транзистора, а значит и от температуры. Работой транзистора управляет напряжение .
Если под действием какого-либо дестабилизирующего фактора увеличивается ток коллектора, то это приводит к увеличению падения напряжения на резисторе и к уменьшению напряжения , что препятствует возрастанию тока коллектора.
Конденсатор используется для ослабления ООС по переменному току, так как при его отсутствии будет уменьшаться коэффициент усиления каскада.
Для получения расчетных соотношений необходимо привести схему эмиттерной стабилизации к обобщенной схеме (рис.2.8, а).
Сравнивая эти две схемы, и применяя теорему об эквивалентном генераторе к участку цепи, подсоединенному к зажиму 1, будем иметь
; ; ; ; ; .
Подставляя эти выражения в (2.20), (2.21), (2.22) и (2.23), можно получить соотношение, связывающее исходный режим работы транзистора и его нестабильность с , , и .
Для повышения стабильности режима необходимо уменьшать коэффициенты нестабильности и . Это можно сделать, увеличив , так как при этом возрастает глубина ООС. Действительно, при из (2.22) и (2.23) следует, что =1, а =0. Однако, при увеличении на нем будет теряться большая доля напряжения источника питания, а, значит, уменьшается напряжение в рабочей точке и допустимая амплитуда сигнала . Чтобы выяснить влияние сопротивления на стабильность схемы, следует обратить внимание на то, что с уменьшением коэффициент будет уменьшаться, а – возрастать. Физически это объясняется тем, что с уменьшением будет увеличиваться влияние и уменьшаться вклад в нестабильность коллекторного тока (рис. 2.8, а). Кроме того, с уменьшением будет увеличиваться глубина последовательной ООС, что способствует повышению стабильности. Чтобы выбрать сопротивление , найдем с учетом (2.22) и (2.23)
Значит, если
или
, (2.28)
то для повышения стабильности необходимо уменьшать и наоборот.
Пример 2.1
По известным параметрам транзистора КТ363Б: Ом, , , и заданным граничным значением температуры окружающей
среды , определены величины
=0,172В, =41,5мкА и Ом.
Таким образом, для большинства практических схем уменьшение Rб способствует улучшению их стабильности. Однако, уменьшение приводит к уменьшению входного сопротивления каскада и к возрастанию тока делителя, т.е. к ухудшению энергетических показателей каскада.
Данная схема обеспечивает работоспособность каскада в диапазоне температур 80…100С.