Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на Вводный курс Office Word.docx
Скачиваний:
19
Добавлен:
21.04.2019
Размер:
333.21 Кб
Скачать

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств колеблющихся систем (осцилляторов)

[Править]По физической природе

  • Механические (звуквибрация)

  • Электромагнитные (светрадиоволны, тепловые)

  • Смешанного типа — комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

  • Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

  • Свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебания являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

  • Автоколебания — колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы — механические часы). Характерным отличием автоколебаний от свободных колебаний является, то что их амплитуда определяется свойствами самой системы, а не начальными условиями.

  • Параметрические — колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

  • Случайные — колебания, при которых внешняя или параметрическая нагрузка является случайным процессом.

[Править]Характеристики

  • Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы,   (м)

  • Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание),   (сек)

  • Частота — число колебаний в единицу времени,   (Гц, сек−1).

Период колебаний   и частота   — обратные величины;

 и 

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота   (рад/сек, Гц, сек−1), показывающая число колебаний за 2πединиц времени:

  • Смещение — отклонение тела от положения равновесия. Обозначение Х, Единица измерения метр.

  • Фаза колебаний — определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

  • Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготенияПериод малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

  • и не зависит[1] от амплитуды и массы маятника.

  • Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

  • Пружинный маятник

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

  • Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1): 

    F (t) = ma (t) = –m ω2 x (t).

  • В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука

    Fупр = –kx.

  • Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

  • Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.

    Рисунок 2.2.1.

    Колебания груза на пружине. Трения нет

  • Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона Ньютона: 

  • откуда 

  • Частота ω0 называется собственной частотой колебательной системы.

  • Период T гармонических колебаний груза на пружине равен 

  • При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную 

  • и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.

  • Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой xускорение является второй производной координаты тела x по времени t

  • Поэтому второй закон Ньютона для груза на пружине может быть записан в виде 

  • или 

    (*)

  • где 

  • Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида 

    x = xm cos (ωt + φ0).

  • Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

  • Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ0 = 0.

  • Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость   то 

  • Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ0 определяются начальными условиями.

Ответ №17

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д. Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. Для груза на пружине(см. §2.2):

 

  Для малых колебаний математического маятника (см. §2.3):

 

  Здесь hm – максимальная высота подъема маятника в поле тяготения Земли, xm и υm = ω0xm – максимальные значения отклонения маятника от положения равновесия и его скорости. Превращения энергии при свободных механических колебаниях в отсутствие трения можно проиллюстрировать графически. Рассмотрим в качестве примера колебания груза массой m на пружине жесткости k. Пусть смещение x(t) груза из положения равновесия и его скорость υ(t) изменяются со временем по законам:

 

υ(t) = –ωxm sin (ω0t).

  Следовательно,

 

  На рис. 2.4.1 изображены графики функций Ep(t) и Ek(t). Потенциальная и кинетическая энергии два раза за период колебаний   достигают максимальных значений. Сумма   остается неизменной.

 1

Рисунок 2.4.1. Превращения энергии при свободных колебаниях.

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

 2

Рисунок 2.4.2. Затухающие колебания.

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными.

Тогда уравнение вынужденных колебаний запишется в виде 

(**)

где   – собственная круговая частота свободных колебаний, ω – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина A определяется выражением: 

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2уравнение вынужденных колебаний (**) содержит две частоты – частоту ω0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону 

x (t) = xmcos (ωt + θ).

Амплитуда вынужденных колебаний xm и начальная фаза θ зависят от соотношения частот ω0 и ω и от амплитуды <m>m>ym внешней силы.

На очень низких частотах, когда ω << ω0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этомx (t) = y (t), и пружина остается практически недеформированной. Внешняя сила   приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы приω << ω0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой(рис. 2.5.2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

Ответ №18

Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.

Тела, которые вызывают распространяющиеся в среде упругие волны, являются источниками волн (колеблющиеся камертоны, струны музыкальных инструментов).

Упругими волнами называются механические возмущения (деформации), производимые источниками, которые распространяются в упругой среде. Упругие волны в вакууме распространяться не могут.

При описании волнового процесса среду считают сплошной и непрерывной, а ее частицами являются бесконечно малые элементы объема (достаточно малые по сравнению с длиной волны), в которых находится большое количество молекул. При распространении волны в сплошной среде частицы среды, участвующие в колебаниях, в каждый момент времени имеют определенные фазы колебания.

Геометрическое место точек среды, колеблющихся в одинаковых фазах, образует волновую поверхность.

Волновую поверхность, отделяющую колеблющиеся частицы среды от частиц, еще не начавших колебаться, называют фронтом волны В зависимости от формы фронта волны различают волны плоские, сферические и др.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.;;

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной.

Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне. Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной. Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны (рис. 15.1). Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных. Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна. В жидкостях и газах упругая деформация сдвига не возникает.

Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ. Смещение y(x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:

где   – так называемое волновое число, ω = 2πf – круговая частота.  На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δt. За время Δt волна переместилась вдоль оси OX на расстояние υΔt. Волны, все точки которых перемещаются с одной и той же скоростью, принято называть бегущими (в отличие от стоячих волн, см. далее).

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за период T, следовательно, λ = υT, где υ – скорость распространения волны. Для любой выбранной точки на графике волнового процесса (например, для точки A на рис. 2.6.4) выражение ωt – kx не изменяется по величине. С течением времени t изменяется и координата x этой точки. Через промежуток времени Δt точка A переместится по оси OX на некоторое расстояние Δx = υΔt. Следовательно:

ωt – kx = ω(t + Δt) – k(x + Δx) = const  или  ωΔt = kΔx.

  Отсюда следует:

  Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число   является пространственным аналогом круговой частоты   Обратим внимание на то, что уравнение

y(x, t) = A cos (ωt + kx)

Ответ №19

Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда)

FA = ρgV,

где ρ — плотность жидкости (газа), g — ускорение свободного падения, а V — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

PB − PA = ρgh

FB − FA = ρghS = ρgV,

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и BS — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

,

где S — площадь поверхности, p — давление в произвольной точке, интегрирование производится по всей поверхности тела.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести   и силы Архимеда  , которые действуют на это тело. Возможны следующие три случая:

  •  — тело тонет;

  •  — тело плавает в жидкости или газе;

  •  — тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где   — плотность тела,   — плотность среды, в которую оно погружено):

  •  — тело тонет;

  •  — тело плавает в жидкости или газе;

  •  — тело всплывает до тех пор, пока не начнет плавать.

Ответ №20

Давление в Жидкости. Закон Паскаля

В жидкостях частицы подвижны, поэтому они не имеют собственной формы, но обладают собственным объемом, сопротивляются сжатию и растяжению; не сопротивляются деформации сдвига (свойство текучести).

В покоящейся жидкости существует два вида статического давления: гидростатическое и внешнее. Вследствие притяжения к Земле жидкость оказывает давление на дно и стенки сосуда, а также на тела, находящиеся внутри нее. Давление, обусловленное весом столба жидкости, называется гидростатическим. Давление жидкости на разных высотах различно и не зависит от ориентации площадки, на которую оно производится.

Пусть жидкость находится в цилиндрическом сосуде с площадью сечения S; высота столба жидкости h. Тогда

Гидростатическое давление жидкости зависит от плотности р жидкости, от ускорения g свободного падения и от глубины h, на которой находится рассматриваемая точка. Оно не зависит от формы столба жидкости.

Глубина h отсчитывается по вертикали от рассматриваемой точки до уровня свободной поверхности жидкости.

В условиях невесомости гидростатическое давление в жидкости отсутствует, так как в этих условиях жидкость становится невесомой. Внешнее давление характеризует сжатие жидкости под действием внешней силы. Оно равно:

Пример внешнего давления: атмосферное давление и давление, создаваемое в гидравлических системах. Французский ученый Блез Паскаль (1623-1662) установил: жидкости и газы передают производимое на них давление одинаково по всем направлениям (закон Паскаля). Для измерения давлений используют манометры.

Их конструкции весьма разнообразны. В качестве примера рассмотрим устройство жидкостного манометра. Он представляет собой U-образную трубку, один конец которой соединяется с резервуаром, в котором измеряют давление. По разности столбов в коленах манометра можно определять давление.