
- •Защита от утечки информации по техническим каналам
- •Глава 1. Характеристика технических каналов утечки информации 4
- •Глава 2.Средства обнаружения каналов утечки информации 34
- •Глава 3. Организация инженерно-технической защиты информации 71
- •Глава 4. Методы и средства защиты информации 88
- •Глава 5. Мероприятия по выявлению каналов утечки информации 119
- •Предисловие
- •Глава 1. Характеристика технических каналов утечки информации
- •1.1. Каналы утечки информации, обрабатываемой техническими средствами приема, обработки, хранения и передачи информации
- •Электромагнитные каналы
- •Электрические каналы
- •Параметрические каналы
- •Вибрационные каналы
- •1.2. Каналы утечки речевой информации
- •Акустические каналы
- •Виброакустические каналы
- •Акустоэлектрические каналы
- •Оптико-электронный (лазерный) канал
- •Параметрические каналы
- •1.3. Каналы утечки информации при ее передаче по каналам связи
- •Электромагнитные каналы
- •Электрические каналы
- •Индукционный канал
- •1.4. Технические каналы утечки видовой информации
- •Наблюдение за объектами
- •Съемка объектов
- •Съемка документов
- •1.5. Несанкционированный доступ к информации, обрабатываемой средствами вычислительной техники
- •Атаки на уровне систем управления базами данных
- •Атаки на уровне операционной системы
- •Атаки на уровне сетевого программного обеспечения
- •Программные закладки
- •1.6. Технические каналы утечки информации, возникающей при работе вычислительной техники за счет пэмин
- •Электромагнитные поля - основной канал утечки информационных сигналов
- •Элементарный электрический излучатель (особенности электромагнитного поля в непосредственной близости от источника)
- •Решение уравнений Максвелла для элементарного магнитного излучателя
- •Электрические излучатели электромагнитного поля
- •Магнитные излучатели электромагнитного поля
- •Электрические каналы утечки информации
- •1.7. Акустические и виброакустические каналы утечки речевой информации из объемов выделенных помещений Основные понятия, определения и единицы измерения в акустике
- •Основные акустические параметры речевых сигналов
- •Уровни речевых сигналов
- •Распространение акустических сигналов в помещениях и строительных конструкциях
- •Каналы утечки речевой информации
- •1.8. Закладные устройства и защита информации от них
- •Построение и общие характеристики закладных устройств
- •Радиозакладные устройства
- •Радиозакладные переизлучающие устройства
- •Закладные устройства типа «длинное ухо»
- •Сетевые закладные устройства
- •Направления защиты информации от закладных устройств
- •Глава 2.Средства обнаружения каналов утечки информации
- •2.1. Индикаторы электромагнитных излучений. Радиочастотомеры
- •Характеристики устройств съема, передающих информацию по радиоканалу
- •Средства обнаружения устройств съема информации с радиоканалом
- •2.2. Радиоприемные устройства Сканирующие приемники
- •Режимы работы сканирующих приемников
- •Рекомендации по выбору сканирующего приемника
- •Высокоскоростные поисковые приемники
- •Селективные микровольтметры, анализаторы спектра
- •2.3. Автоматизированные поисковые комплексы
- •Принципы функционирования комплексов
- •Специальное программное обеспечение
- •Применение спо для построения поисковых комплексов
- •Специализированные поисковые программно-аппаратные комплексы
- •Мобильные поисковые комплексы
- •2.4. Нелинейные локаторы
- •Принцип работы нелинейного локатора
- •Эксплуатационно-технические характеристики локаторов
- •Методика работы с локатором
- •2.5. Досмотровая техника
- •Металлодетекторы
- •Приборы рентгеновизуального контроля
- •Переносные рентгенотелевизионные установки
- •Тепловизионные приборы
- •Эндоскопы
- •Средства радиационного контроля
- •Глава 3. Организация инженерно-технической защиты информации
- •3.1. Организационно-методические основы защиты информации Общие требования к защите информации
- •Руководящие и нормативно-методические документы, регламентирующие деятельность в области защиты информации
- •3.2. Методика принятия решения на защиту от утечки информации в организации
- •Алгоритм принятия решения
- •Оценка условий, в которых придется решать поставленную
- •Разработка вариантов и выбор оптимального
- •3.3. Организация защиты информации Основные методы инженерно-технической защиты информации
- •Глава 4. Методы и средства защиты информации
- •4.1. Организация защиты речевой информации
- •Пассивные средства защиты выделенных помещений
- •Аппаратура и способы активной защиты помещений от утечки речевой информации
- •Особенности постановки виброакустических помех
- •Рекомендации по выбору систем виброакустической защиты
- •Подавление диктофонов
- •Нейтрализация радиомикрофонов
- •Защита электросети
- •Защита оконечного оборудования слаботочных линий
- •Защита абонентского участка телефонной линии
- •Защита информации, обрабатываемой техническими средствами
- •Заземление
- •4.2. Организация защиты информации от утечки, возникающей при работе вычислительной техники, за счет пэмин
- •Характеристика канала утечки информации за счет пэмин
- •Методология защиты информации от утечки за счет пэмин
- •Критерии защищенности свт
- •Нормированные уровни помех в каналах утечки
- •Основные задачи и принципы защиты свт
- •Методика проведения специальных исследований технических средств эвт
- •Графический метод расчета радиуса зоны II (r2) технических средств эвт
- •Организация защиты пэвм от несанкционированного доступа
- •Построение системы защиты
- •Состав типового комплекса защиты от несанкционированного доступа
- •Динамика работы комплекса защиты от нсд
- •Глава 5. Мероприятия по выявлению каналов утечки информации
- •5.1. Специальные проверки
- •Порядок проведения специальной проверки технических средств
- •5.2. Специальные обследования
- •Подготовка к проведению специальных обследований
- •Замысел решения на проведение поисковой операции
- •Выполнение поисковых мероприятий
- •Подготовка отчетных материалов
- •5.3. Специальные исследования Общие положения, термины и определения
- •Постановка задачи
- •Специальные исследования в области защиты речевой информации
- •Специальные исследования в области защиты цифровой информации
- •Глава 5
- •Приложения
- •Предписание
- •1. Требования при эксплуатации
- •Предписание
- •1. Требования при эксплуатации
- •2. Контроль за соблюдением требований предписания
- •1. Объект контроля
- •2. Назначение объектов и их краткое описание
- •3. Контролируемая зона
- •4. Вид проводимого инструментального контроля
- •5. Виды разведок, контролируемые каналы и возможные направления
- •8. Метод проведения измерений
- •9. Таблицы результатов измерений и расчетов показателя противодействия
- •Центр безопасности информации «маском» (цби «маском») протокол № хх/200_
- •6. Анализ построения систем вспомогательных технических средств на объекте эксплуатации
- •7. Основные положения методики измерений, исследований и контроля
- •8. Результаты специальных исследований технических средств
- •9. Заключение
- •7. Анализ построения системы электропитания и заземления отсс
- •9. Выводы
- •Список литературы
- •Глава 1. Характеристика технических каналов утечки
- •1.2. Каналы утечки речевой информации....!......................................10
- •1.4. Технические каналы утечки видовой информации.....................15
- •1.5. Несанкционированный доступ к информации, обрабатываемой средствами вычислительной техники...................17
- •1.8. Закладные устройства и защита информации от них................38
- •Глава 2. Средства обнаружения каналов утечки
- •2.1. Индикаторы электромагнитных излучений. Радиочастотомеры.....57
- •2.2. Радиоприемные устройства.........................................................69
- •Глава 3. Организация инженерно-технической защиты
- •Глава 4. Методы и средства защиты информации............................159
- •Глава 5. Мероприятия по выявлению каналов утечки
Переносные рентгенотелевизионные установки
Для обеспечения защиты информации в настоящее время существует большой арсенал специальных технических средств, в основе которых положены методы радиационного неразрушающего контроля. От стационарных установок, оборудованных полной биологической защитой, до малогабаритных переносных, которые укладываются в одну относительно небольшую упаковку. С их помощью можно осуществлять обследование и небольших подарков и различных несущих строительных конструкций из железобетона или кирпича.
Малогабаритные переносные рентгенотелевизионные установки предназначены для проведения радиоскопического контроля предметов интерьера, багажа, почтовых отправлений и различных бытовых предметов в стационарных и полевых условиях. С помощью установок могут быть обнаружены инородные включения, отличающиеся по плотности от окружающего их материала контролируемого объекта, независимо от предназначения этих включений. То есть, можно обнаружить и систему передачи информации, и взрывное устройство. К достоинствам малогабаритных установок можно отнести следующее:
- быстрое развертывание на месте проведения поиска;
- хорошая оперативность в работе;
- высокая производительность;
- возможность записи теневых изображений в электронную память интроскопа или персонального компьютера для последующего анализа и обработки;
- возможность работы от аккумуляторов.
В состав установок входят рентгеновский аппарат и рентгенотелевизионный интроскоп, которые функционально связаны между собой.
Для осуществления контроля к объекту вплотную придвигается блок преобразователя интроскопа, а излучатель рентгеновского аппарата размещается с противоположной стороны на некотором расстоянии от объекта.
При включении установки, поток рентгеновского излучения проходит через контролируемый объект, ослабляется в зависимости от свойств материалов его фрагментов. В результате из контролируемого объекта выходит уже неравномерный поток, величина интенсивности которого в разных точках его сечения будет отражать внутреннее строение контролируемого объекта. Возникает радиационное теневое изображение. Преобразователь интроскопа светится в зависимости от интенсивности падающего на него потока рентгеновского излучения. Таким образом радиационное изображение преобразуется в видимое. Это изображение считывается телевизионной камерой и передается по кабелю в блок управления и индикации.
Рис. 2.23. Рентгенотелевизионный комплекс «Премьер»
В переносных установках используются малогабаритные моноблочные рентгеновские аппараты. Это аппараты непрерывного действия с анодным током до 5 мА и максимальным анодным напряжением до 90 кВ, импульсные аппараты с напряжением до 250 кВ и микрофокусные аппараты с анодным током до 0,1 мА и с напряжением до 150 кВ. Выбор рентгеновского аппарата влияет на предельную доступную для контроля толщину объекта и на качество получаемого изображения.
Наиболее часто используются микрофокусные рентгеновские аппараты. По сравнению с сильноточными и импульсными аппаратами они позволяют получать увеличенное до 12 раз изображение отдельных фрагментов контролируемого объекта и оказывают наименьшее радиационное воздействие на окружающих, вследствие небольшой величины анодного тока.
Рентгенотелевизионная установка «Премьер» (рис. 2.23.) с микрофокусным излучателем РИ-100М позволяет осуществлять контроль объектов, имеющих эквивалентную по алюминию толщину до 40 мм. Размер рабочего поля преобразователя составляет 290 х 390 мм. Размер экрана монитора по диагонали - 30 см. Чувствительность контроля соответствует выявлению медной проволоки диаметром 0,2 мм без преграды, или 0,4 мм за преградой из алюминия толщиной 10 мм. Время включения излучателя для получения изображения 8 с. Количество записываемых в долгосрочную память изображений - 3000. Теневое изображение контролируемого объекта может быть представлено в позитивном, негативном и дополнительно
Рис. 2.24. Малогабаритная рентгенотелевизионная установка «Норка»
проконтрастированном виде. Общая масса установки 40 кг. Электропитание осуществляется от сети переменного тока частотой 50 Гц и напряжением 220 В.
Переносная рентгенотелевизионная установка «Норка» (рис. 2.24.) с рентгеновским излучателем РИ-100М позволяет осуществлять контроль объектов, имеющих эквивалентную по алюминию толщину до 40 мм. Размеры рабочего поля трех преобразователей, которые входят в комплект установки, составляют 114 х 152 мм, 290 х 390 мм и 410 х 545 мм. Размер экрана монитора по диагонали - 15 см. Чувствительность контроля соответствует выявлению медной проволоки диаметром 0,3 мм без преграды. Время включения излучателя для получения изображения 8 с. Количество записываемых в долгосрочную память изображений - 128. Общая масса установки 12 кг. Электропитание осуществляется от сети переменного тока частотой 50 Гц и напряжением 220 В или от аккумуляторного блока.
Рентгеновские аппараты являются источниками ионизирующего излучения и при работе с ними необходимо строго выполнять требования по радиационной безопасности, содержащиеся в эксплуатационной документации.