- •Билет №1
- •Конструкция средней части камеры жрд:
- •Структурные схемы хрд и нхрд приведены на рис
- •Формы камер сгорания:
- •Билет №3
- •Классификация головок камер жрд
- •Билет №4
- •Сравнение размеров двигателей
- •Билет №5
- •Билет №6
- •Формы баков, применяемых на ла:
- •Влияние исходного положения топлива в баке на центровку лa:
- •Билет №7
- •Распределение температуры в камере жрд
- •Билет №8
- •Классификация систем охлаждения жрд
- •Изменение параметров газового потока по длине камеры жрд
- •Билет №9
- •' Схемы центробежных насосов:
- •Односторонние крыльчатки: а- открытого типа; б - закрытого типа
- •Двухсторонняя крыльчатка
- •Охлаждение периферийными форсунками
- •Пояса завес
- •Емкостные тзп
- •Теплоизоляционные тзп
- •Аблирующие тзп
- •Сгорающие тзп
- •Коксующиеся тзп
- •Испаряющиеся тзп
- •Билет №10
- •Уплотнения крыльчаток: а - щелевое; б - лабиринтное; в - плавающее
- •Компоновочные схемы тна Наибольшее распространение в жрду получили одновальные схемы тна. Билет №11
- •Изменение параметров по тракту центробежного насоса
- •Треугольники скоростей на входе и на выходе из крыльчатки центробежного насоса
- •Неравномерности полей давления, скорости и пульсации в межлопаточном канале крыльчатки
- •Треугольник скоростей на выходе из центробежного насоса
- •Напорная характеристика насоса с бесконечным числом лопаток крыльчатки
- •Напорные характеристики центробежного насоса
- •Классификация систем охлаждения жрд
- •Билет №12
- •Твердотопливный гг
- •Схемы двухкомпонентных жгг
- •Графики зависимости т, r и rt от α
- •Билет№14
- •1.Объемная производительность насоса, V, м3 / с
- •2. Действительный напор насоса, Нд, Дж/кг.
- •7. Потребная мощность насоса, nh, Вт.
- •8. Коэффициент быстроходности насоса, ns.
- •Конструкция турбины тна
- •Характерные типы валов
- •Конструкция дисков турбин тна
- •Корпусные детали тна
- •Сварной корпус турбины:
- •Элементарная схема и треугольники скоростей турбины:
- •Типы турбин: - осевая; б—радиальная центростремительная; в—тангенциальная: 7—сопловый аппарат, 2—лопатки
- •Многоступенчатые турбины:
- •Двухвальная турбина
- •Изменение давления в камере при запуске:
- •Газовые рули
- •Дефлекторы
- •Триммеры: а) интерцепторы; б) заслонки
- •Форкамерный способ воспламенения горючих смесей
- •Принципиальная схема термоакустического устройства для воспламенения горючих смесей:
- •Тупиковая полость; 5 - реакционная полость; 6 - фланец крепления
- •Принципиальная схема системы электрического зажигания горючих смесей
Конструкция средней части камеры жрд:
1 и 2 — внутренняя и внешняя стенки камеры ЖРД, соответственно;
3— цапфа; 4— коллектор; 5—патрубок с фланцем
Наибольшее распространение в практике фирм США, Англии и Франции получил метод изготовления стенок из профилированных стальных или алюминиевых трубок (см. рис.30, в), хотя применяется и метод, указанный на рис.30, б.
Рубашка 2 изготовляется из высокопрочных материалов — стали, титана. Она может быть выполнена сплошной по всему контуру стенки или в виде отдельных колец, что определяется расчетом на прочность камеры ЖРД при условии минимального веса конструкции. В некоторых конструкциях рубашка изготовляется намоткой стальной ленты или приволоки с последующей пайкой. Применяются также рубашки из стекловолокна, пропитанного пластмассой.
Цапфы 3 воспринимают силу тяги камеры и привариваются к усиленной части рубашки камеры ЖРД. Чтобы избежать больших деформаций гибких трубопроводов при поворотах качающихся камер, горючее и окислитель можно подводить через осевые сверления в цапфах.
Коллектор 4 служит для равномерного распределения охлаждающей жидкости по каналам стенки камеры. Он выполняется из листового металла и приваривается или припаивается к рубашке. Жидкость подводится через один, два или более патрубков с приваренными фланцами 5 для соединения с трубопроводами, идущими от ТНА.
Неохлаждаемая часть сопла испытывает сравнительно небольшое внутреннее давление и изготовляется из тонколистового материала (стали, тагана). Для защиты от высокой температуры применяются различные покрытия, наносимые электроосаждением, плазменным распылением, диффузионным и другими способами.
Особенности проведения прочностного расчёта камер ЖРД
Камера двигателя является, как правило, двустенной, скрепленной связями, оболочкой, находящейся под силовым и температурным воздействием.
При работе ЖРД температуры наружной и внутренней оболочек различны и переменны как вдоль оболочки, так и по ее толщине. В наиболее тяжелых температурных условиях работает внутренняя оболочка. Средняя температура ее много выше, чем у наружной оболочки и, кроме того, значительно изменяется температура по толщине ее (тем больше, чем больше тепловой поток через стенку и чем меньше теплопроводность стенки). При таких температурных условиях работы в стенках возникают большие температурные напряжения и ухудшаются механические свойства материала. Ввиду этого при прочностных расчетах камеры ЖРД необходимо учитывать температуру и неравномерность ее по толщине внутренней оболочки, а также изменение механических свойств материала при повышении температуры.
2) Разность между давлением в охлаждающем тракте и статистическим давлением в камере, а также температура внутренней стенки переменны по длине камеры двигателя.
Вследствие этого прочностные расчеты внутренней оболочки необходимо проводить минимум для двух сечений: сечения наибольшей разности давлений и сечения наибольшей температуры внутренней оболочки.
3) Проведение расчетов камеры двигателя на прочность по допускаемым напряжениям не всегда приемлемо. Дело в том, что одни только температурные напряжения в стенках камеры могут значительно превосходить предел упругости, так что материал камеры двигателя работает в области пластических деформаций при одновременном силовом и температурном воздействии.
Поэтому основным критерием пригодности камеры ЖРД целесообразно считать не значения возникающих напряжений, а величину деформаций как оболочки в целом, так и ее элементов.
4) Прочностные расчеты камеры ЖРД имеют характер проверочного расчета.
Все основные размеры оболочек, способы скреплений, а также нагрузки на оболочку и температуры ее определяются в первую очередь условиями надежности системы охлаждения и обеспечения заданной тяги двигателя и лишь затем - условиями прочности.
Если какие-либо элементы камеры не удовлетворяют условиям прочности, мы не можем изменять их размеры без введения существенных поправок в расчет охлаждения или тепловой расчет камеры. Так, например, мы не можем увеличить толщину стенки внутренней оболочки, так как при этом резко изменятся условия охлаждения.
Билет №2
Классификация ЖРД
Требования, предъявляемые к камере ЖРД, материалы (6.4), формы (6.5).
Классификация ракетных двигателей (РД)
На представлена классификация ракетных двигателей.
Термическим РД называется двигатель, у которого энергия первичного источника преобразуется в тепло, а затем в кинетическую энергию истекающей струи. Химические РД являются термическими.
