- •Билет №1
- •Конструкция средней части камеры жрд:
- •Структурные схемы хрд и нхрд приведены на рис
- •Формы камер сгорания:
- •Билет №3
- •Классификация головок камер жрд
- •Билет №4
- •Сравнение размеров двигателей
- •Билет №5
- •Билет №6
- •Формы баков, применяемых на ла:
- •Влияние исходного положения топлива в баке на центровку лa:
- •Билет №7
- •Распределение температуры в камере жрд
- •Билет №8
- •Классификация систем охлаждения жрд
- •Изменение параметров газового потока по длине камеры жрд
- •Билет №9
- •' Схемы центробежных насосов:
- •Односторонние крыльчатки: а- открытого типа; б - закрытого типа
- •Двухсторонняя крыльчатка
- •Охлаждение периферийными форсунками
- •Пояса завес
- •Емкостные тзп
- •Теплоизоляционные тзп
- •Аблирующие тзп
- •Сгорающие тзп
- •Коксующиеся тзп
- •Испаряющиеся тзп
- •Билет №10
- •Уплотнения крыльчаток: а - щелевое; б - лабиринтное; в - плавающее
- •Компоновочные схемы тна Наибольшее распространение в жрду получили одновальные схемы тна. Билет №11
- •Изменение параметров по тракту центробежного насоса
- •Треугольники скоростей на входе и на выходе из крыльчатки центробежного насоса
- •Неравномерности полей давления, скорости и пульсации в межлопаточном канале крыльчатки
- •Треугольник скоростей на выходе из центробежного насоса
- •Напорная характеристика насоса с бесконечным числом лопаток крыльчатки
- •Напорные характеристики центробежного насоса
- •Классификация систем охлаждения жрд
- •Билет №12
- •Твердотопливный гг
- •Схемы двухкомпонентных жгг
- •Графики зависимости т, r и rt от α
- •Билет№14
- •1.Объемная производительность насоса, V, м3 / с
- •2. Действительный напор насоса, Нд, Дж/кг.
- •7. Потребная мощность насоса, nh, Вт.
- •8. Коэффициент быстроходности насоса, ns.
- •Конструкция турбины тна
- •Характерные типы валов
- •Конструкция дисков турбин тна
- •Корпусные детали тна
- •Сварной корпус турбины:
- •Элементарная схема и треугольники скоростей турбины:
- •Типы турбин: - осевая; б—радиальная центростремительная; в—тангенциальная: 7—сопловый аппарат, 2—лопатки
- •Многоступенчатые турбины:
- •Двухвальная турбина
- •Изменение давления в камере при запуске:
- •Газовые рули
- •Дефлекторы
- •Триммеры: а) интерцепторы; б) заслонки
- •Форкамерный способ воспламенения горючих смесей
- •Принципиальная схема термоакустического устройства для воспламенения горючих смесей:
- •Тупиковая полость; 5 - реакционная полость; 6 - фланец крепления
- •Принципиальная схема системы электрического зажигания горючих смесей
Сгорающие тзп
Они представляют собой твердотопливную систему, состоящую из горючего и окислителя, причем элементов, являющихся горючим существенно больше по сравнению с тем количеством, которое обеспечивало бы эффектив ный процесс горения.
Продукты сгорания такого ТЗП имеют существенно меньшую температуру, по сравнению с основным газовым потоком, что определяет возможность создания более холодного пристеночного слоя.
В случае использования указанного типа ТЗП необходимо определить оптимум между толщиной покрытия и массовыми характеристиками двигательной установки для обеспечения создания тепловой защиты.
Обычно указанный тип используется для бронировки твердотопливных зарядов РДТТ.
Коксующиеся тзп
Они представляют собой матричную систему на основе фенольных смол или каучука. При этом в качестве наполнителя используются асбест, стекло или нейлон. Температура материала, уносимого газовым потоком, существенно ниже по сравнению с температурой самого потока. Коксовый остаток, образовавшийся на поверхности ТЗП, имеет плотную структуру, что определяет постоянство сечений каналов.
Коксующие ТЗП могут использоваться вторично при условии их последующей пропитки фенольными смолами.
Испаряющиеся тзп
Они представляют собой сотовую конструкцию. В качестве материала, образующего соты используются пористые вольфрам или молибден, а в качестве наполнителя - медь.
Билет №10
Предвключенные насосы. (8.9). Уплотнения крыльчаток. (8.5).
Турбонасосная система подачи компонентов топлива. (8.1). Компоновочные схемы ТНА. (8.2).
Предвключенные насосы
Предвключенные насосы обеспечивают увеличение давления жидкости на входе в основной центробежный насос. Они бывают струйные и шнековые (бустерные).
Работа струйного преднасоса основана на процессе инжекции, т.е. увеличении давления на входе в основной центробежный насос путем подпитки поступающего потока жидкости более высоконапорной струей, отбираемой от выхода центробежного насоса, рис.72.
Рис.72
Схема струйного преднасоса: 1—сопло; 2- входная магистраль центробежного насоса
Повышение давления во входном сечении центробежного насоса определяется энергией струи, вытекающей из центрального сопла. Достоинство струйных насосов в их конструктивной простоте и отсутствии вращающихся частей. Однако коэффициент полезного действия этих насосов невысок и для обеспечения существенного повышения давления в магистрали они требуют на привод большого расхода высоконапорной струи. Струйные насосы пока не нашли применения в ЖРД в качестве основных насосов, хотя в последнее время рассматривается возможность их использования.
Шнековый преднасос - это осевой насос, состоящий из 2х - 3х винтовых лопаток трапециидального сечения, рис.73.
Рис. 73
Шнековый преднасос
Шнековый преднасос не только повышает давление жидкости, но и создает закрутку потока, уменьшающую относительную скорость движения жидкости на входе. Напорность шнека составляет 3—20% от общего напора центробежного насоса.
Такой насос обладает повышенными антикавитационными свойствами по сравнению с центробежными насосами. Это достигается за счет того, что:
разница давления на рабочих и нерабочих поверхностях шнека существенно ниже, чем у лопаток центробежных насосов;
осевой подвод жидкости уменьшает возможность появления процесса кавитации у верхних кромок шнека.
Уплотнения крыльчаток
С целью снижения перетечек жидкости в крыльчатках насосов устанавливаются уплотнения следующих типов: щелевые, лабиринтные и плавающие, рис.62 а,б,в, соответственно.
Принцип работы щелевых уплотнений основан на обеспечении высокого гидравлического сопротивления кольцевой щели между графитовым вкладышем, установленным в корпусе насоса, и проточкой, выполненной во входном сечении диска. Конструкция данного уплотнения допускает до 15% перетечек от объема перекачиваемой жидкости, в то время как лабиринтное, рис.62 б, и плавающее (набор фторопластовых и алюминиевых шайб, установленных во входном сечении крыльчатки), рис.62 в, - до 10 % и 5 %, соответственно.
а) б) в)
Рис.62
