- •Билет №1
- •Конструкция средней части камеры жрд:
- •Структурные схемы хрд и нхрд приведены на рис
- •Формы камер сгорания:
- •Билет №3
- •Классификация головок камер жрд
- •Билет №4
- •Сравнение размеров двигателей
- •Билет №5
- •Билет №6
- •Формы баков, применяемых на ла:
- •Влияние исходного положения топлива в баке на центровку лa:
- •Билет №7
- •Распределение температуры в камере жрд
- •Билет №8
- •Классификация систем охлаждения жрд
- •Изменение параметров газового потока по длине камеры жрд
- •Билет №9
- •' Схемы центробежных насосов:
- •Односторонние крыльчатки: а- открытого типа; б - закрытого типа
- •Двухсторонняя крыльчатка
- •Охлаждение периферийными форсунками
- •Пояса завес
- •Емкостные тзп
- •Теплоизоляционные тзп
- •Аблирующие тзп
- •Сгорающие тзп
- •Коксующиеся тзп
- •Испаряющиеся тзп
- •Билет №10
- •Уплотнения крыльчаток: а - щелевое; б - лабиринтное; в - плавающее
- •Компоновочные схемы тна Наибольшее распространение в жрду получили одновальные схемы тна. Билет №11
- •Изменение параметров по тракту центробежного насоса
- •Треугольники скоростей на входе и на выходе из крыльчатки центробежного насоса
- •Неравномерности полей давления, скорости и пульсации в межлопаточном канале крыльчатки
- •Треугольник скоростей на выходе из центробежного насоса
- •Напорная характеристика насоса с бесконечным числом лопаток крыльчатки
- •Напорные характеристики центробежного насоса
- •Классификация систем охлаждения жрд
- •Билет №12
- •Твердотопливный гг
- •Схемы двухкомпонентных жгг
- •Графики зависимости т, r и rt от α
- •Билет№14
- •1.Объемная производительность насоса, V, м3 / с
- •2. Действительный напор насоса, Нд, Дж/кг.
- •7. Потребная мощность насоса, nh, Вт.
- •8. Коэффициент быстроходности насоса, ns.
- •Конструкция турбины тна
- •Характерные типы валов
- •Конструкция дисков турбин тна
- •Корпусные детали тна
- •Сварной корпус турбины:
- •Элементарная схема и треугольники скоростей турбины:
- •Типы турбин: - осевая; б—радиальная центростремительная; в—тангенциальная: 7—сопловый аппарат, 2—лопатки
- •Многоступенчатые турбины:
- •Двухвальная турбина
- •Изменение давления в камере при запуске:
- •Газовые рули
- •Дефлекторы
- •Триммеры: а) интерцепторы; б) заслонки
- •Форкамерный способ воспламенения горючих смесей
- •Принципиальная схема термоакустического устройства для воспламенения горючих смесей:
- •Тупиковая полость; 5 - реакционная полость; 6 - фланец крепления
- •Принципиальная схема системы электрического зажигания горючих смесей
Распределение температуры в камере жрд
В первоначальный момент времени при запуске двигателя температура внутренней стенки со стороны газа и охладителя изменяются с течением времени; причём темп изменения температур может быть неодинаков.
Такой тепловой режим называется нестационарным или неустановившимся.
Через некоторый период времени наступает установившийся (стационарный) режим, который характеризуется постоянством параметров (Тст1, Тст2) рассматриваемого процесса (при неизменных режимных параметрах теплообмена qi, Tr и Тохл).
Суммарная плотность теплового потока, воспринимаемая внутренней стенкой камеры ЖРД, может быть определена следующим образом:
где: qK и qл - плотности теплового потока, воспринимаемые внутренней стенкой камеры ЖРД, обусловленные явлениями конвекции и лучистого теплообмена, соответственно.
где: Сn - приведенный коэффициент лучеиспускания.
Дополнительные параметры, характеризующие работу ракетного двигателя
Тип рабочего тела - выбирается в зависимости от области применения.
Время работы двигателя.
ЖРД - 1000с РДТТ - 200 - 300с Если двигатель обладает системой многократного включения, то задаётся количество включений и интервал времени между ними.
Отклонение величины тяги от её номинального значения
ном.Значения давлений в камере Рк и на срезе сопла Ра.
Величина суммарного импульса
Величина импульса последействия
Билет №8
Классификация систем охлаждения (7.3).
Распределение плотности теплового потока по длине камеры ЖРД (7.2).
Классификация систем охлаждения ЖРД. Внешнее охлаждение
Проточное охлаждение - это охлаждение элементов, за счет обтекания поверхности нагрева охладителем с внешней стороны.
При автономном охлаждении охладитель после отбора тепла с внешней стороны стенки направляется не в камеру сгорания, а отводится к другим элементам или узлам (схема ЖРД с газификацией охладителя в зарубашечном пространстве).
При регенеративном охлаждении в качестве охладителя используется один из компонентов топлива, который после прохождения по зарубашечному пространству направляется в камеру сгорания.
При радиационном охлаждении отвод тепла с внешней стороны элемента осуществляется за счет излучения.
На рис.54 представлена классификация систем охлаждения ЖРД.
Рис.54
Классификация систем охлаждения жрд
Распределение плотности теплового потока по длине камеры ЖРД
Величина плотности теплового потока и её распределение по Длине камеры ЖРД в основном определяется следующими параметрами, рис.53:
Рис.53
Изменение параметров газового потока по длине камеры жрд
температурой газа Tr;
скоростью газового потока Wr;
плотностью газа
;площадью поперечного сечения камеры F.
Величина конвективной составляющей плотности теплового потока qK в основном определяется массовой скоростью рабочего тела (Wr` pr) и величиной площади поперечного сечения (F):
Величина конвективной составляющей плотности теплового потока qK в основном определяется массовой скоростью рабочего тела (Wr` pr) и величиной площади поперечного сечения (F):
Величина лучистой составляющей плотности теплового потока зависит от температуры газового потока Тг:
Как видно из рис.53 максимальное значение суммарной плотности теплового потока q∑; max наблюдается в зоне критического сечения сопла и в некоторых случаях указанная величина может достигать 60 МВт/м2, что определяет необходимость создания эффективной тепловой защиты.
