
- •1. Обработка информации и проблема интерпретации. Роль математического моделирования
- •Основные этапы математического моделирования
- •2. Основные понятия теории систем. Система и системное свойство
- •Понятия, характеризующие функционирование и развитие систем
- •Элемент
- •Подсистема
- •Структура
- •Состояние
- •Поведение
- •Модель функционирования (поведения) системы
- •3. Классификация систем
- •4. Взаимодействие системы с окружающей средой. Метаболизм
- •5. Определение понятия модели. Методы моделирования и классификация моделей
- •6. Математическая и компьютерная модель. Уровень идеализации и принцип минимальности
- •7. Цели моделирования и требования, предъявляемые к модели. Этапы компьютерного моделирования
- •8. Классификация математических и компьютерных моделей
- •Классификация км
- •9. Линейные модели и линейные системы уравнений. Проблемы вырождения и обусловленности
- •10. Интерполяция данных. Формулировка задачи интерполяции. Линейная интерполяция
- •Геометрическая интерпретация
- •11. Интерполяция полиномом и сплайны
- •Интерполяция многочленами
- •Метод решения задачи Полином Лагранжа
- •Полином Ньютона
- •Погрешность интерполирования
- •Выбор узлов интерполяции
- •12. Многомерная интерполяция данных
- •13. Идентификация моделей и задачи аппроксимации. Линейная аппроксимация и линеаризация
- •14. Нелинейная аппроксимация. Аппроксимация функцией произвольного вида. Аппроксимация полиномом
- •15. Нелинейная аппроксимация. Метод вложенных алгоритмов
- •16. Численное дифференцирование. Устойчивость и выбор шага дифференцирования
- •17. Вычисление определенных интегралов. Сравнительная характеристика методов Методы численного интегрирования
- •Интегрирование методом Монте-Карло
- •Обычный алгоритм Монте-Карло интегрирования
- •18. Метод Монте-Карло. Вычисление кратных интегралов
- •19. Моделирование стационарного состояния нелинейных систем
- •20. Моделирование динамики систем. Уравнения переходных процессов
- •Скалярное уравнение динамики системы
- •Векторное уравнение динамики системы
- •21. Моделирования динамики систем и численные методы решения задачи Коши
- •22. Жесткие системы. Неявные методы. Эквидистантный метод
- •23. Использование метода Монте-Карло при построении модели оптической пары "излучатель-приемник".
- •24. Стохастические модели. Получение случайных чисел с заданным распределением.
- •1.4. Моделирование случайных величин с заданным законом распределения
- •1. Метод нелинейного преобразования, обратного функции распределения
- •2. Метод Неймана
- •3. Метод кусочной аппроксимации
- •4. Некоторые специальные методы моделирования случайных величин
- •25. Модель источника случайных воздействий
- •26. Моделирование процессов кристаллизации. Расчет плоского кластера
- •27. Моделирование инерционных систем
- •28. Распределенные системы. Модель зонной печи
7. Цели моделирования и требования, предъявляемые к модели. Этапы компьютерного моделирования
1) исследование- получение новых знаний, установл внутр непротиворечивости, интерпритация знаний,формирование способа представл знаний (макс точность, универсальность, изоморфность)
2)проектирование- формальные и неформал критерии (мин время обращения к модели при заданном уровне адекватности; мин объем памяти/инфо/ )
3) управление – надежность, способность обеспечить моделирование в реальном масштабе времени.
Постановка задачи, построение содержательной модели - творческий процесс, основанный на возможностях и знаниях исследователя, базируется на эвристике.
Изучив задание, можно выделить следующие цели создания модели:
Определение производительности второго цикла обработки деталей;
При каком условии возможно повышение загрузки второго станка и снижение уровня задела на втором цикле обработки;
Идентификация реальных объектов
На этом этапе осуществляется определение основных элементов реальной системы, и привязка их к образным понятиям модели с дальнейшим конкретизированием и конвертированием в математическое представление на стадии расширения алгоритма программной реализации.
Для начала определим, что это вообще берется за понятие системы. Исходя из поставленной задачи, под системой подразумевается автоматизированный конвейер обработки деталей в машинном цехе, воздействие на систему с внешней среды не осуществляется, а внутреннее производится непосредственно над деталями (первичная и вторичная обработка) и станками (уровень загрузки и производительности).
Далее определим входные и выходные элементы системы, для модели это будет входная и выходная информация. За входные элементы примем детали, а точнее количество этих деталей. За выходные – производительность станков на втором уровне обработки (я не принимаю уровень загрузки сборщика брака, т.к. это можно определить по производительности).
Так же можно сразу разбить систему на две подсистемы (это в дальнейшем упростит программную реализацию): систему первичной обработки деталей и систему вторичной обработки брака. Так как известно, что бракованные детали не могут обрабатываться дважды нет необходимости в дальнейшем дроблении.
Наиболее важными являются требования точности, экономичности и универсальности. Они противоречивы, например повышение точности модели делает её сложнее, а, значит, и менее экономичной. Поэтому на практике приходится довольствоваться компромиссными решениями.
К основным этапам компьютерного моделирования относятся:
постановка задачи, определение объекта моделирования;
разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;
формализация, то есть переход к математической модели; создание алгоритма и написание программы;
планирование и проведение компьютерных экспериментов;
анализ и интерпретация результатов.
8. Классификация математических и компьютерных моделей
Все модели можно разделить на два класса:
1. вещественные,
2.идеальные.
В свою очередь вещественные модели можно разделить на:
1натурные,
2физические,
3математические.
Идеальные модели можно разделить на:
1наглядные,
2знаковые,
3математические.
Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.
Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).
Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.
Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.
Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.
Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.
В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.
Остановимся на одном из наиболее универсальных видов моделирования - математическом, ставящим в соответствие моделируемому физическому процессу систему математических соотношений, решение которой позволяет получить ответ на вопрос о поведении объекта без создания физической модели, часто оказывающейся дорогостоящей и неэффективной.
Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.
Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.
В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов
Фi (X,Y,Z,t)=0,
где X - вектор входных переменных, X=[x1,x2,x3, ... , xN]t,
Y - вектор выходных переменных, Y=[y1,y2,y3, ... , yN]t,
Z - вектор внешних воздействий, Z=[z1,z2,z3, ... , zN]t,
t - координата времени.
Форма и принципы представления математической модели зависит от многих факторов.
По принципам построения математические модели разделяют на:
аналитические;
имитационные.
В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.
Аналитическая модель разделяется на типы в зависимости от математической проблемы:
уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),
задачи оптимизации,
стохастические проблемы.
Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.
В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.
В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:
детерминированные,
стохастические.
В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.
Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.
По виду входной информации модели разделяются на:
непрерывные,
дискретные.
Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.
По поведению моделей во времени они разделяются на:
статические,
динамические.
Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.
По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:
изоморфные (одинаковые по форме),
гомоморфные (разные по форме).
Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.