
- •1. Обработка информации и проблема интерпретации. Роль математического моделирования
- •Основные этапы математического моделирования
- •2. Основные понятия теории систем. Система и системное свойство
- •Понятия, характеризующие функционирование и развитие систем
- •Элемент
- •Подсистема
- •Структура
- •Состояние
- •Поведение
- •Модель функционирования (поведения) системы
- •3. Классификация систем
- •4. Взаимодействие системы с окружающей средой. Метаболизм
- •5. Определение понятия модели. Методы моделирования и классификация моделей
- •6. Математическая и компьютерная модель. Уровень идеализации и принцип минимальности
- •7. Цели моделирования и требования, предъявляемые к модели. Этапы компьютерного моделирования
- •8. Классификация математических и компьютерных моделей
- •Классификация км
- •9. Линейные модели и линейные системы уравнений. Проблемы вырождения и обусловленности
- •10. Интерполяция данных. Формулировка задачи интерполяции. Линейная интерполяция
- •Геометрическая интерпретация
- •11. Интерполяция полиномом и сплайны
- •Интерполяция многочленами
- •Метод решения задачи Полином Лагранжа
- •Полином Ньютона
- •Погрешность интерполирования
- •Выбор узлов интерполяции
- •12. Многомерная интерполяция данных
- •13. Идентификация моделей и задачи аппроксимации. Линейная аппроксимация и линеаризация
- •14. Нелинейная аппроксимация. Аппроксимация функцией произвольного вида. Аппроксимация полиномом
- •15. Нелинейная аппроксимация. Метод вложенных алгоритмов
- •16. Численное дифференцирование. Устойчивость и выбор шага дифференцирования
- •17. Вычисление определенных интегралов. Сравнительная характеристика методов Методы численного интегрирования
- •Интегрирование методом Монте-Карло
- •Обычный алгоритм Монте-Карло интегрирования
- •18. Метод Монте-Карло. Вычисление кратных интегралов
- •19. Моделирование стационарного состояния нелинейных систем
- •20. Моделирование динамики систем. Уравнения переходных процессов
- •Скалярное уравнение динамики системы
- •Векторное уравнение динамики системы
- •21. Моделирования динамики систем и численные методы решения задачи Коши
- •22. Жесткие системы. Неявные методы. Эквидистантный метод
- •23. Использование метода Монте-Карло при построении модели оптической пары "излучатель-приемник".
- •24. Стохастические модели. Получение случайных чисел с заданным распределением.
- •1.4. Моделирование случайных величин с заданным законом распределения
- •1. Метод нелинейного преобразования, обратного функции распределения
- •2. Метод Неймана
- •3. Метод кусочной аппроксимации
- •4. Некоторые специальные методы моделирования случайных величин
- •25. Модель источника случайных воздействий
- •26. Моделирование процессов кристаллизации. Расчет плоского кластера
- •27. Моделирование инерционных систем
- •28. Распределенные системы. Модель зонной печи
Основные этапы математического моделирования
1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.
2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.
3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.
4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.
5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.
2. Основные понятия теории систем. Система и системное свойство
Система – объект, кот. можно рассматривать как некоторое множество взаимодействующих или связанных между собой элементов и обладает по крайней мере 1 свойством, кот. не имеет ни 1 из элементов указанного множества.
Элемент системы также можно рассматривать как систему (субсистема, подсистема).
Понятия, характеризующие функционирование и развитие систем
В настоящее время нет единства в определении понятия «система». В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основоположник теории систем Людвиг фон Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отношениях друг с другом и со средой. А. Холл определяет систему как множество предметов вместе со связями между предметами и между их признаками. Ведутся дискуссии, какой термин- «отношение» или «связь» - лучше употреблять.
Позднее в определениях системы появляется понятие цели. Так, в «Философском словаре» система определяется как «совокупность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целостное единство».
В последнее время в определение понятия системы наряду с элементами, связями и их свойствами и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби .
М. Масарович и Я. Такахара в книге «Общая теория систем» считают, что система - «формальная взаимосвязь между наблюдаемыми признаками и свойствами».
Рассмотрим основные понятия, характеризующие строение и функционирование систем.
Элемент
Под элементом принято понимать простейшую неделимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от аспекта его изучения. Таким образом, элемент - это предел членения системы с точек зрения решения конкретной задачи и поставленной цели. Систему можно расчленить на элементы различными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.