- •Вопрос 1 – Мультиплексор. Принцип построения и работы мультиплексора.
- •Вопрос 2 – Сумматор. Принцип построения и работы сумматора. Правила сложения двоичных чисел.
- •Вопрос 3 – Счетчики импульсов, принцип построения и работы.
- •Вопрос 4 – Асинхронный rs триггер. Принцип построения и работы, таблица истинности, временная диаграмма.
- •Вопрос 5 – Синхронный rs триггер. Принцип построения и работы, таблица истинности, временная диаграмма.
- •Вопрос 6 – d триггер. Принцип построения и работы, таблица истинности, временная диаграмма.
- •Вопрос 7 – t триггер. Принцип построения и работы, таблица истинности, временная диаграмма.
- •Вопрос 8 – jk триггер. Принцип работы, таблица истинности, временная диаграмма.
- •Вопрос 9 – Схемотехническая реализация логического элемента 2и-не структуры ттл. Принцип его работы.
- •Вопрос 10 – Схемотехническая реализация логического элемента 2или-не структуры ттл. Принцип его работы.
- •Вопрос 11 – Схемотехническая реализация логического элемента 2и-не структуры кмоп. Принцип его работы.
- •Вопрос 12 – Схемотехническая реализация логического элемента 2или-не структуры кмоп. Принцип его работы.
- •Вопрос 13 – Основы цифровых устройств, представление информации в цифровых устройствах.
- •Вопрос 14 – Теоретические основы проектирования цифровых устройств, операция дизъюнкции, операция инверсии.
- •Вопрос 15 – Теоретические основы проектирования цифровых устройств, операция конъюнкции, операция инверсии.
- •Вопрос 16 – Способы представления логических функций, построение логической схемы по заданной функции.
- •Вопрос 17 – Минимизация логических функций на основе метода карт Карно.
- •Вопрос 18 – Синтез комбинационных устройств (дешифратор двоично-десятичного кода в семисегментный код).
- •Вопрос 19 – Цифровые счетчики, принцип построения и работы, модуль счета.
- •Вопрос 20 – Дифференциальный каскад, схема, принцип работы.
- •Вопрос 21 – Операционный усилитель, структурная схема. Ачх.
- •Вопрос 22 – Инвертирующее включение оу.
- •Вопрос 23 – оу, назначение, не инвертирующее включение.
- •Вопрос 24 – Инвертирующий сумматор на основе оу.
- •Вопрос 25 – Усилители электрических сигналов, структурная схема, ачх.
- •Структура усилителя
- •Вопрос 26 – Усилительный каскад на транзисторе, режим по постоянному току.
- •Вопрос 27 – Биполярный транзистор, принцип работы.
- •Вопрос 28 – Биполярный транзистор, входная и семейство выходных характеристик.
- •Вопрос 29 – Полевой транзистор с управляющим p-n переходом, принцип работы, характеристики.
- •Вопрос 30 – Полевой транзистор с изолированным затвором, принцип работы, характеристики.
- •Вопрос 31 – Полупроводниковые стабилитроны, вольтамперная характеристика, основные параметры, применение.
- •Параметры
- •Вопрос 32 – Выпрямительные диоды, вольтамперная характеристика, основные параметры, применение.
- •Характеристики
- •Вопрос 33 – Параметрический стабилизатор напряжения, схема, принцип работы, основные параметры стабилизатора.
- •Параллельный параметрический стабилизатор на стабилитроне
Вопрос 17 – Минимизация логических функций на основе метода карт Карно.
Карта Карно́ — графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.
Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.
В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.
Вопрос 18 – Синтез комбинационных устройств (дешифратор двоично-десятичного кода в семисегментный код).
В цифровых системах широко применяются преобразователи кодов, обеспечивающие перевод информации из одной формы в другую. Одним из таких преобразователей является дешифратор, используемый в устройствах визуальной индикации десятичных цифр на световых табло. Это табло на светодиодных и жидкокристаллических индикаторах, на электролюминесцентных и электровакуумных приборах. Для перечисленных типов индикаторов характерна определенна геометрия расположения их сегментов. В случаи полупроводниковых индикаторов их сегменты представляют собой светодиодных индикаторах в виде продолговатых прямоугольников.
X1 |
X2 |
X3 |
Ya |
Yb |
Yc |
Yd |
Ye |
Yf |
Yg |
N |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
3 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
4 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
5 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
6 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
7 |
Вопрос 19 – Цифровые счетчики, принцип построения и работы, модуль счета.
Цифровой счетчик импульсов - это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время. Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2n - 1, где n - число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0. Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие - счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным.
Счетчики относятся к последовательностным устройствам с циклически повторяющейся последовательностью состояний. Число, соответствующее количеству импульсов (поступивших на вход счетчика), при котором счетчик “возвращается” в исходное состояние, называется модулем или коэффициентом счета. Модуль счета, обычно, обозначают буквой М (или Ксч). Например, максимальный модуль счета счетчика из двух триггеров равен М = 22 = 4, трех триггеров - М = 23 = 8 и т.д. В общем случае для n - разрядного счетчика - М = 2n. Модуль счета счетчика численно совпадает с модулем деления делителя частоты. Счетчик по модулю 8 позволяет реализовать (без дополнительных схемных затрат) делитель частоты на 8. Это значит, что данный делитель делит частоту входной импульсной последовательности на 8.