
- •2.1. Общая характеристика подгруппы галогенов.
- •2. Способы получения галогенов. Применение.
- •3. Водородные соединения галогенов. Свойства, применение.
- •4. Хлорная вода. Получение, свойства, применение.
- •5. Хлорная известь. Получение, свойства, применение.
- •6.Кислородсодержащие кислоты галогенов. Изменение их силы и окислительной способности. Соли кислородсодержащих кислот. Применение.
- •7. Общая характеристика подгруппы кислорода.
- •8. Вода. Физические и химические свойства. Вода как растворитель. Биологическая роль воды.
- •9. Сероводород, получение и свойства. Сероводородная кислота. 1-я и 2-я константы диссоциации. Роль в окислительно-восстановительных процессах. Соли сероводородной кислоты.
- •10. Серная кислота. Роль в окислительно-восстановительных процессах. Соли серной кислоты. Применение.
- •12. Общая характеристика подгруппы азота.
- •13. Аммиак. Получение, химические свойства, применение.
- •15. Азотистая кислота и ее соли. Роль в окислительно-восстановительных процессах. Применение.
- •16. Биологическая роль азота и фосфора. Применение.
- •17. Мышьяк и его соединения. Обнаружение. Влияние на живой организм. Применение.
7. Общая характеристика подгруппы кислорода.
Подгруппа кислорода, или халькогенов – 6-я группа периодической системы Д.И. Менделлева, включающая следующие элементы: кислород – О; сера – S; селен – Se; теллур – Te; полоний – Po (радиоактивный элемент).
Номер группы указывает на максимальную валентность элементов, стоящих в этой группе. Общая электронная формула халькогенов: ns2np4– на внешнем валентном уровне у всех элементов имеется 6 электронов, которые редко отдают и чаще принимают 2 недостающих до завершения уровня электрона. Наличие одинакового валентного уровня обуславливает химическое сходство халькогенов. Характерные степени окисления: -1; -2; 0; +1; +2; +4; +6. Сверху вниз, с нарастанием внешнего энергетического уровня закономерно изменяются физические и химические свойства халькогенов: радиус атома элементов увеличивается, энергия ионизации и сродства к электрону, а также электроотрицательность уменьшаются; уменьшаются неметаллические свойства, металлические увеличиваются (кислород, сера, селен, теллур – неметаллы), у полония имеется металлический блеск и электропроводимость. Водородные соединения халькогенов соответствуют формуле: H2R: H2О, H2S, H2Sе, H2Те – хальководороды.
8. Вода. Физические и химические свойства. Вода как растворитель. Биологическая роль воды.
Из оксидов водорода
самым распространенным на Земле
является вода. Эмпирическая
формула – Н2О. Молекулярная
масса – 18. Строение
молекулы воды (структурная
формула):
Физические свойства: вода – бесцветная жидкость, без вкуса и запаха, плотность – 1 г/см3; температура замерзания – 0 °C (лед), кипения – 100 °C (пар). При 100 °C и нормальном давлении водородные связи рвутся и вода переходит в газообразное состояние – пар. У воды плохая тепло-и электропроводность, но хорошая растворимость.
Химические свойства: вода незначительно диссоциирует:
В присутствии воды
идет гидролиз солей – разложение их
водой с образованием слабого электролита:
.
Взаимодействует со многими основными оксидами, металлами:
С кислотными оксидами:
Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).
Биологическая роль воды:
Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсального растворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время — достаточную сложность образующихся комплексных соединений. Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причём именно в том, который широко представлен на планете Земля в настоящее время.