Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы матан.docx
Скачиваний:
26
Добавлен:
18.04.2019
Размер:
324.39 Кб
Скачать

10 Вопрос

Сравнение бесконечно малых, таблица

11 Вопрос

Бесконечно большие, связь с бесконечно малыми

Теорема 1. Если функция f(x) является бесконечно большой при x→a, то функция 1/f(x) является бесконечно малой при x→a.

Доказательство. Возьмем произвольное число ε>0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x, для которых |x – a|<δ, выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a, то найдется δ>0 такое, что как только |x – a|<δ, так |f(x)|>1/ ε. Но тогда для тех же x .

Примеры.

  1. Ясно, что при x→+∞ функция y=x2+1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞, т.е. .

  2. .

Можно доказать и обратную теорему.

Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y=1/f(x) является бесконечно большой функцией.

Доказательство теоремы проведите самостоятельно.

Примеры.

  1. .

  2. .

  3. , так как функции и - бесконечно малые при x→+∞, то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A≠ 0

.

12 Вопрос

Односторонние пределы, классификация точек разрыва

1

До сих пор мы рассматривали определение предела функции, когда x→a произвольным образом, т.е. предел функции не зависел от того, как располагалось x по отношению к a, слева или справа от a. Однако, довольно часто можно встретить функции, которые не имеют предела при этом условии, но они имеют предел, если x→a, оставаясь с одной стороны от а, слева или справа (см. рис.). Поэтому вводят понятия односторонних пределов.

Если f(x) стремится к пределу b при x стремящемся к некоторому числу a так, что xпринимает только значения, меньшие a, то пишут и называют bпределом функции f(x) в точке a слева.

Таким образом, число b называется пределом функции y=f(x) при x→aслева, если каково бы ни было положительное число ε, найдется такое число δ (меньшее a), что для всех выполняется неравенство .

Аналогично, если x→a и принимает значения большие a, то пишут и называют b пределом функции в точке а справа. Т.е. число b называется пределом функции y=f(x) при x→a справа, если каково бы ни было положительное число ε, найдется такое число δ (большее а), что для всех выполняется неравенство .

Заметим, что если пределы слева и справа в точке a для функции f(x) не совпадают, то функция не имеет предела (двустороннего) в точке а.

2

Точки разрыва. Классификация

Е сли рассмотреть график функции в окрестности точки x= 0 (см. рис. справа), то ясно видно, что он как бы “разрывается” на отдельные кривые. Аналогично можно рассмотреть функцию, изображенную на рисунке слева в окрестности точки 2. Говорят, что во всех указанных точках соответствующие функции становятся разрывными.

Точка называется точкой разрыва функции y = f(x), если она принадлежит области определения функции или её границе и не является точкой непрерывности.

В этом случае говорят, что при x= x0 функция разрывна. Это может произойти, если в точке x0 функция не определена или не существует предел , или если предел существует, но .