
- •1 Вопрос
- •2 Операции над множествами Бинарные операции
- •3 Интуитивное описание
- •Теоретико-множественное определение
- •Свойства
- •2 Вопрос
- •3 Вопрос
- •1.Определение
- •Ограниченные и неограниченные последовательности
- •4 Вопрос
- •1 Первый замечательный предел
- •2 Второй замечательный предел
- •5 Вопрос
- •3 Бесконечно малые
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос
- •9 Вопрос
- •10 Вопрос
- •11 Вопрос
- •12 Вопрос
- •Точки разрыва. Классификация
- •13 Вопрос
- •14 Вопрос
- •15 Вопрос
3 Бесконечно малые
Функция
y=f(x)
называется бесконечно
малой
при x→a
или при x→∞,
если
или
,
т.е. бесконечно малая функция – это
функция, предел которой в данной точке
равен нулю.
П
римеры.
Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как
(см. рис.).
Функция f(x) = tgx – бесконечно малая при x→0.
f(x) = ln (1+x)– бесконечно малая при x→0.
f(x) = 1/x– бесконечно малая при x→∞.
Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.
Доказательство.
Приведем доказательство для двух
слагаемых. Пусть f(x)=α(x)+β(x),
где
и
.
Нам нужно доказать, что при произвольном
как угодно малом ε>0
найдется δ>0,
такое, что для x,
удовлетворяющих неравенству |x
– a|<δ,
выполняется |f(x)|<
ε.
Итак, зафиксируем произвольное число ε>0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1>0, что при |x – a|<δ1 имеем |α(x)|< ε/2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2>0, что при |x – a|<δ2 имеем | β(x)|< ε/2.
Возьмем δ=min{ δ1, δ2}.Тогда в окрестности точки a радиуса δбудет выполняться каждое из неравенств |α(x)|< ε/2 и | β(x)|< ε/2. Следовательно, в этой окрестности будет
|f(x)|=| α(x)+β(x)| ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,
т.е. |f(x)|<ε, что и требовалось доказать.
Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞) есть бесконечно малая функция.
Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a, то для произвольного ε>0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|< ε/M. Тогда в меньшей из этих окрестностей имеем | αf|< ε/M= ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично.
Из доказанной теоремы вытекают:
Следствие
1.
Если
и
,
то
.
Следствие
2.
Если
и
c=const,
то
.
Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.
Доказательство.
Пусть
.
Тогда 1/f(x)
есть ограниченная функция. Поэтому
дробь
есть
произведение бесконечно малой функции
на функцию ограниченную, т.е. функция
бесконечно малая.
6 Вопрос
Арифметические свойства пределов(вопрос 3), 1-й, 2-й замеч. пределы (вопрос 4)
7 Вопрос
Непрерывность функции в точке и свойства
1
Представление
о непрерывности функции интуитивно
связано у нас с тем, что её графиком
является плавная, нигде не прерывающаяся
линия. При рассмотрении графика такой
функции y =
f(x) мы видим,
что близким значениям аргумента
соответствуют близкие значения функции:
если независимая переменная
приближается
к точке x0,
то значение функции y
= f(x)
неограниченно приближается к значению
функции в точкеx0,
т.е. к f(x0).
Дадим строгое определение непрерывности функции. Итак, пусть имеем функцию y = f(x).
Функция y = f(x) называется непрерывной в точке x0, если она определена в этой точке и в некоторой окрестности содержащей x0 и
|
(1) |
Таким образом, можно сказать, что функция непрерывна в точкеx0, если выполнены 3 условия:
она определена в точке x0 и в некоторой её окрестности;
имеет предел при x → x0;
этот предел равен значению функции в точке x0.
Формулу
(1) можно записать в виде
,
т.к.
.
Это означает, что для того, чтобы найти
предел непрерывной функции при x
→ x0,
достаточно в выражение функции подставить
вместо аргумента xего
значение x0.
Пример:
Докажем,
что функция y
= 3x2
непрерывна в произвольной точке x0.
Для этого найдем
.
Если функция y=f(x) непрерывна в каждой точке некоторого интервала (a; b), где a < b, то говорят, что функция непрерывна на этом интервале.
2
Теорема 1. Если функции f(x) и g(x) непрерывны в точке x0, то их сумма φ(x) = f(x) + g(x) также есть непрерывная функция в точке x0.
Доказательство.
Так как функции f(x)
и
g(x)
непрерывны в точке x0,
то исходя из определения можно написать
.
Тогда на основании свойств пределов
будем иметь
.
Эта теорема справедлива для любого конечного числа слагаемых.
Следующие две теоремы докажите самостоятельно аналогично теореме 1.
Теорема 2. Произведение двух непрерывных функций есть функция непрерывная.
Теорема 3. Частное двух непрерывных функций есть функция непрерывная, если знаменатель в рассматриваемой точке не обращается в нуль.
Если
функцию можно представить в виде y
= f(u),
где u
= φ(x),
т.е. если функция
зависит
от переменной
через
промежуточный аргумент u,
то
называется
сложной
функцией переменной x.
Примеры:
y = sinx3. Здесь u = x3, y = sin u.
y = etg x, u = tg x, y = eu.
Таким образом, под термином сложная функция следует понимать не какое – либо очень сложное выражение, а функцию, которая зависит от аргумента x через несколько промежуточных функций.
Справедлива следующая теорема.
Теорема 4. Если функция u = φ(x) непрерывна в точкеx0 и принимает в этой точке значение u0 = φ(x0), а функция f(u) непрерывна в точке u0, то сложная функция y = f(φ(x)) непрерывна в точке x0.
Используя эти теоремы можно доказать следующий результат.
Теорема 5. Всякая элементарная функция непрерывна в каждой точке, в которой она определена.
Заметим, что если функция y = f(x) непрерывна в точке x0 и её значение в этой точке отлично от 0, f(x0) ≠ 0, то значения функции f(x) в некоторой окрестности точки x0 имеют тот же знак, что и f(x0), т.е. если f(x0) > 0, то найдётся такое δ > 0, что на интервале(x0– δ;x0+ δ) f(x) > 0 (в этой окрестности значения функции f(x) очень мало отличаются от своего предела).