
- •Взаимодействие зарядов. Закон Кулона.
- •Электрическое поле. Напряженность поля.
- •Суперпозиция полей. Поле диполя. Напряженность поля электрического диполя.
- •4. Линии напряженности. Поток вектора напряженности.
- •5.Теорема Гаусса. Независимость потока от поверхности. Доказательство теоремы.
- •6.Напряженность поля для различных конфигураций его источника.
- •2. Поле двух разноименно заряженных плоскостей.
- •7.Работа сил электростатического поля.
- •8.Потенциал
- •9.Связь между напряженностью электрического поля и потенциалом.
- •10.Полярные и неполярные молекулы.
- •11.Диполь в однородном и неоднородном электрических полях.
- •12.Поляризация диэлектриков. Связь поляризации и связанных зарядов.
- •Связь поляризации и связанных зарядов.
- •13. Поляризация и плотность связанных зарядов.
- •14.Описание поля в диэлектриках. Вектор электрического смещения. Диэлектрическая проницаемость.
- •15.Поле внутри плоской пластины.
- •16.Преломление линий электрического смещения.
- •16.Взаимодействие токов.
- •Магнитное поле .Магнитный момент.
- •Поле прямого и кругового токов.
- •Циркуляция вектроа в. Поле соленоида.
- •Сила, действующая на ток в магнитном поле. Сила Ампера для дифференциации силы и элемента длины.
- •Сила Лоренца. Ее действие на движущиеся заряды.
- •Контур с током в магнитном поле. Действие момента сил на контур с током, сила, действующая на контур в неоднородном поле.
- •Работа, совершаемая при перемещении тока в магнитном поле.
- •Магнитное поле в веществе. Намагниченность.
- •Описание поля в магнетиках. Напряженность поля. Магнитная восприимчивость и магнитная проницаемость.
- •Преломление линий магнитной индукции.
- •Классификация магнетиков.
- •Диамагнетизм. Ларморова прецессия.
- •Парамагнетизм.
- •Ферро и антиферромагнетизм. Доменная структура.
- •Явление электромагнитной индукции.
- •Электродвижущая сила индукции.
- •Токи Фуко.
- •Явление самоиндукции.
- •Энергия магнитного поля.
- •Электромагнитное поле. Вихоевое электрическое поле.
- •Ток смещения.
- •Электромагнитное поле. Уравнения Максвелла в интегральной форме.
- •Теория Дурде. Закон Ома. Закон Джоуля-Ленца.
- •Основы квантовой теории твердых тел.
- •Контактная разность потенциалов
Поле прямого и кругового токов.
Применим формулу (40.3) для вычисления полей простейших токов. Рассмотрим поле, создаваемое током, текущим по бесконечному прямому проводу (рис. 65). Все dB в данной точке имеют одинаковое направление (в нашем случае за чертеж). Поэтому сложение векторов dB можно заменить сложением их модулей. Точка, для которой мы вычисляем магнитную индукцию, находится на расстоянии b от провода. Из рис. 65 видно, что
Подставим эти значения в формулу (40.3 ):
Угол для всех элементов бесконечного прямого тока изменяется в пределах от 0 до . Следовательно,
Рис. 65. |
Риг. 66. |
(41.1)
Линии магнитной индукции поля прямого тока представляют собой систему охватывающих провод концентрических окружностей (рис. 66).
Рис. 67. |
Рис. 68 |
( = /2). Проинтегрируем это выражение по всему контуру:
Итак, магнитная индукция в центре кругового тока равна
(41.4)
Теперь найдем В на оси кругового тока, на расстоянии х от плоскости, в которой лежит контур (рис. 68).
Векторы dB перпендикулярны к плоскостям, проходящим через соответствующие dl и r. Следовательно, они образуют симметричный конический веер (рис. 68,6).
Из соображений симметрии можно заключить, что результирующий вектор В направлен вдоль оси тока. Каждый из составляющих векторов dB вносит в результирующий вектор вклад
Угол между dl и r прямой, поэтому
Проинтегрировав по всему контуру и
заменив r на
получим
(41.5)
При х = 0 эта формула переходит, как и должно быть, в формулу (41.4) для магнитной индукции в центре кругового тока.
Стоящее в числителе соотношения (41.5) выражение R2i равно рm – магнитному моменту контура. На больших расстояниях от контура в знаменателе можно пренебречь R2 по сравнению с х2. Тогда формула (41.5) принимает вид
аналогичный выражению F.2) для напряженности электрического поля на оси диполя. Учитывая, что В на оси кругового тока и рm направлены вдоль положительной нормали к контуру, можно написать
(41.6)
Рис. 69. |
Рис. 70 |