Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lineynaya.docx
Скачиваний:
50
Добавлен:
17.04.2019
Размер:
338.75 Кб
Скачать

41)Скалярное произведение n-мерных векторов. Неравенство Коши-Буняковского. Косинус угла между m-мерными векторами.

Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное произведение векторов а, b обозначается символом ab(две черточки сверху) (порядок записи сомножителей безразличен, то есть ab=ba )

Угол (фи) между векторами:

А=(x1;y1;z1) B=(x2;y2;z2)

Нера́венство Коши́ — Буняко́вского Для любых элементов и линейного пространства со скалярным произведением выполняется неравенство. |(x,y)|<или =||x||*||y||

связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением.

Пусть дано линейное пространство L со скалярным произведением (x;y) . Пусть||x|| — норма, порождённая скалярным произведением, то есть ||x||=(x;x)(все под корнем) . Тогда для любых х,у принадлежит L имеем:

|(x,y)|<или =||x||*||y||

причём равенство достигается тогда и только тогда, когда векторы x и y пропорциональны (коллинеарны).

В пространстве комплекснозначных квадратично суммируемых последовательностей i² неравенство Коши — Буняковского имеет вид:

В пространстве комплексных квадратично интегрируемых функций неравенство Коши — Буняковского имеет вид:

Косинус угла между векторами находят из их скалярного произведения. Сумма произведения соответствующих координат вектора равна произведению их длин на косинус угла между ними.

42)Определение линейно зависимых и независимых векторов. Критерий линейной зависимости и независимости векторов в пространстве rⁿ.

Пусть имеем векторное пространство V и систему векторов A={ } (система отличается от множества тем, что в ней могут быть одинаковые элементы). Вектор называется линейной комбинацией системы векторов A. Если все скаляры α1 = α2 = α3... = αk = 0, то такая комбинация называется тривиальной (простейшей), (и ). Если хотя б один скаляр отличен от 0, то такая комбинация называется нетривиальной

Определение 1. Система векторов A называется линейно-независимой, если только тривиальная линейная комбинация векторов системы равна (т.е. )

Определение 2. система векторов A называется линейно-зависимой, если существует хотя бы одна нетривиальная линейная комбинация, равная

Критерий линейной зависимости векторов:

Для того чтобы векторы (r > 1) были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.

Размерность линейного пространства

Линейное пространство V называется n-мерным (имеет размерность n), если в нем:

1) существует n линейно независимых векторов;

2) любая система n + 1 векторов линейно зависима.

43.Базис линейного пространства. Примеры базисов в r в степени n.

Базисом линейного пространства L называется система элементов принадлежащих L, удовлетворяющая двум условиям:

1) система линейно независима.

2) Любой элемент L линейно выражается через базисные (т.е. является линейной комбинацией элементов )

Базис в пространстве R в степени n (канонический базис). Примеры: Базисом в пространстве называются три некомпланарных вектора , взятые в определённом порядке. Эти векторы называются базисными.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]