- •1.1 Функции и характеристики элементов автоматических устройств
- •1.2 Датчики, основные показатели и характеристики
- •1.2.1 Датчики температуры
- •1.2.1 Б) Полупроводниковые термосопротивления (термисторы)
- •1.2.1. В) Термопары
- •1.2.1.Г) Манометрические термометры
- •1.2.2 Датчики давления
- •1.2.3 Датчики уровня жидкости
- •1.2.5 Датчики для автоматического анализа состава материала
- •1.2.5.2 Плотномеры для жидкостей
- •1.2.6. Влагомеры для газов и твердых тел.
- •1.2.6 Б) Метод точки росы
- •2.2 Классификация систем автоматического регулирования
- •2.3.2 Одноемкостные астатические объекты
- •2.3.3 Объекты чистого запаздывания
- •2.4.2 Регуляторы прерывистого действия (релейные, позиционные)
- •2.4.3 Б) Астатические регуляторы (интегральные)
- •2.4.3 Г) пд - регуляторы, пид - регуляторы
- •2.4.4 А) Параметры качества в регулирования для статических и астатических объектов
- •Электромагнитные исполнительные механизмы
- •2.5.2Электродвигательные исполнительные механизмы
- •2.5.3 Пневматические исполнительные механизмы
- •3 Основы теории автоматического регулирования
- •3.1.1Дифференциальные уравнения (обыкновенные)
- •3.1.2 Передаточные функции
- •3.2 Управления типовых звеньев аср
- •3.2.7 Звено чистого запаздывания
- •3.3 Передаточные функции аср
- •3.3.1 Последовательное соединение звеньев
- •3.3.2 Параллельное соединение звеньев
- •3.3.3 Соединение звеньев по принципу обратной связи
- •4 Технические средства автоматизации
- •4.1 Выбор системы приборов автоматизации
- •5.1 Проектирование функциональных систем автоматизации
- •5.2 Типовые объекты и типовые схемы автоматизации
3.2.7 Звено чистого запаздывания
Динамическая его характеристика имеет вид: у=х*(t – τ), где τ – время чистого запаздывания. График переходного процесса:
Характеристика – величина у на выходе звена = вх величине х, но через время τ. Передаточная функция имеет вид: W(р)=у(р)/х(р)=е-р*τ
3.3 Передаточные функции аср
Отношение преобразованной по Лапласу выходной величины АСР (или элемента) к преобразованной по Лапласу входной величины АСР называется передаточной функцией АСР (элемента).
У(Р)/ Х(Р) =(b0*Pm+ b1*Pm-1+…+ bm-1*P+bm)/(a0*Pn+ a1*Pn-1+…+ an-1*P+an) =W(P)
Знаменатель передаточной функции приравнивают к 0, и такая функция называется характеристическое уравнение АСР(или элемента).
Любая АСР состоит из отдельных звеньев, элементов, соединенных по следующим схемам:
1.последовательное соединение элементов
2. параллельное соединение
3. смешанное соединение элементов
4. соединение элементов по схеме обратной связи
Для определения передаточной функции данной АСР необходимо определить передаточные функции вышеуказанных элементов в схеме.
3.3.1 Последовательное соединение звеньев
W1(P)
W2(P)
Wn(P)
Х3(Р) Хn(P) Хn+1(Р), У(Р)
Х
1(Р)
……
Х(Р)
W1(P)… Wn(P)-передаточная функция отдельных звеньев.
На входе и выходе – входные и выходные сигналы. Входные сигналы первого звена равны сигналу всей системы. Х1(Р) = Х(Р)
Вся система обозначена как W(Р). Выходной сигнал всей системы У(Р):
Хn+1(Р)=У(Р)
W(Р)= У(Р)/ Х(Р)
Определяющим выражением передаточной функции для каждого звена является отношение выходного сигнала к входному.
W1(P) =X2(P)/X1(Р); W2(P)=X3(P)/X2(Р)
Wn(P)=Xn+1(P)/Xn(Р)
Перемножим соотношения:
W1(P)* W2(P)* Wn(P)= Xn+1(P)/X1(Р)= У(Р)/ Х(Р) =W(P)
Передаточная функция АСР, состоящая из n последовательно соединенных звеньев равна произведению передаточных функций звеньев.
3.3.2 Параллельное соединение звеньев
W1(P)
У1(Р)
Х1(Р) W(Р)
W2(P)
Wn(P)
Х 2(Р) У2(Р) У(Р)
Х n(Р) Уn(Р)
Входной сигнал системы равен входному сигналу всех элементов. Х(Р) = Х1(Р)= Х3(Р)= Хn(Р)
Выходные сигналы АСР равен сумме входных сигналов его элементов:
У1(Р)= W1(Р)* Х(Р)
У2(Р)= W2(Р)* Х(Р)
Уn(Р)= Wn(Р)* Х(Р)
У(Р)=У1(Р)+ У2(Р)+ У3(Р)+ +Уn(Р) (3.1)
В формулу 3.1 подставим получен. ранее выходных сигналов каждого элемента У(Р)= W1(Р)* Х(Р)+ W2(Р)* Х(Р)+ ..+ Wn(Р)* Х(Р)
У(Р)/Х(Р)= W1(Р)+ W2(Р)+…+ Wn(Р)= W(Р)
Передаточная функция АСР состоящая из n параллельно соединенных звеньев равна сумме передаточных функций отдельных ее звеньев.
3.3.3 Соединение звеньев по принципу обратной связи
Схема замкнутого АСР приведена на рис.3
Х
W1(P)
Х++
(Р) Х1 У(Р)
Хос(Р) W(P)
+1
W1(P) м.б. последовательное соединение различных звеньев, параллельное и т.д.В любом замкнутом АСР сигнал с ее выхода по каналу обратной связи поступает на ее вход. Если по направлению данный сигнал обр. связи Хос(Р) совпадает с основным Х(Р), то такая связь называется положительной. В этом случае результирующий сигнал системы Х1(Р) равен сумме данных сигналов, т.е Х1(Р)= Х(Р)+ Хос(Р)
Положительные обратные связи применяются только в качестве внутренних обратных связей, охватывающих только
Если сигнал обратной связи Хос(Р) направлен противоположно основному сигналу Х(Р) то такая обратная связь называется отрицательной.(рис.4)
Х
W1(P)
Х++
(Р) Х1 У(Р)
Хос(Р) W(P)
-1
Суммарный сигнал Х1(Р) равен разности основного сигнала Х(Р) и Хос(Р)
Х1(Р)= Х(Р)- Хос(Р)
Для вывода передаточной функции рассмотрим вариант, когда в цепь включено звено с передаточной функцией W2(P).(рис.5)
Х
W1(P)
Х++
(Р) Х1 У(Р)
Хос(Р) W(P)
W2(P)
Выходной сигнал У(Х) относительно передаточной функции W1(P),а входной – Х1(Р). У(Р)= W1(Р)* Х1(Р)
Х1(Р)= Х(Р)- Хос(Р)
Хос(Р)= W2(Р)*У(Р)
У(Р)= W1(Р)[ Х(Р)- Хос(Р)]= W1(Р)[ Х(Р)- W2(Р)*У(Р)]
У(Р) + W1(Р) *У(Р) W2(Р)= W1(Р)* Х(Р)
W(Р)= У(Р)/Х(Р)= W1(Р)/1+ W1(Р)* W2(Р)
Для положительной обратной связи :
W(Р)= У(Р)/Х(Р)= W1(Р)/1- W1(Р)* W2(Р)
Для АСР изображенном на рис.3 W2(Р)=1, поэтому передаточная функция им.вид:
W(Р)= W1(Р)/1– W1(Р)
Для рис.4:
W(Р)= W1(Р)/1+ W1(Р)
3.4 Анализ точности АСР При определении точности АСР находят значение статической ошибки работы АСР (Δу).
Пример: определим статическую погрешность АСР, состоящей из последовательно – соединенных звеньев (безинерционного, инерционного, колебательно–затухающего), охваченных отрицательной обратной связью:
Получим придаточную функцию данного АСР:
W(р)=
,
Преобразуем:
W(р)=
,
Рассмотрим статический режим, приняв
р=0 (оператор):
W(р)=у
установится ≥
,
Введем обозначения: к0=к1*к2*к3 – общ
коэффициент усиления АСР, у
установ-ся=к0/1+к0=1 –
,
В данном случае принимаем задан значение
выходной величины у=1, у задан =1. Статическая
погрешность Δу определяется:
Δу=у задан – установится, Δу=1/1+к0 – статическая ошибка работы АСР. Ее можно уменьшить, увеличив…
3.5 Устойчивость АСР Чтобы АСР нормально работала она должна быть устойчивая. Устойчивость АСР – способность возвращаться к установившемуся положению (установленное значение регулируемой величины после прекращения действия возмущения которое вывело её из данного установившегося положения). Для оценки устойчивости работы АСР применяют 1) Алгебраический критерий Гурвиц и Раус.2)Частотные критерии Найквиста и Михайлова
Критерий Гурвица –основан на анализе неравенств состоящих из коэффициентов уравнения АСР. Характеристическое уравнение n-порядка
Оценка
устойчивости АСР n-порядка
по критерию Гурвица производится:составляется
из коэффициентов характеристического
уравнения Таблица Гурвица – по главной
диагонали выписываются
;
строка
таблицы с нечетным и чётными индексами
чередуются; число элементов каждой
строки = n,
недостающие коэффициенты заполняются
нулями; отчеркивая строки и столбцы
получают n
определителей Гурвица. АСР n-порядка
является устойчивой если все
(
)
. Устойчивость
АСР оценивается по 2-м условиям 1) -
Необходимо положительно всех коэффициентов
характеристического уравнения
2)
– Достаточным является выполнение
неравенств для определённого порядка
АСР
Условия получения положительного определителя Гурвица:
АСР
2-го порядка 1.
Достаточное условие устойчивости АСР
является положительность коэффициентов
характеристического уравнения. АСР
3-го n=3
достаточное условие
. АСР 4-го n=4
достаточное
условие
