Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геоморфология.docx
Скачиваний:
7
Добавлен:
16.04.2019
Размер:
127.56 Кб
Скачать

19. Русловые процессы. Асимметрия речных берегов и долин.

Русловы́е проце́ссы — совокупность явлений и процессов, происходящих под воздействием комплекса различных природных и антропогенных факторов, и выражающихся в изменениях формы и параметров речных русел. Русловые процессы иногда неточно называются руслово́й проце́сс. Формы ру́словый проце́сс и ру́словые проце́ссы — устаревшие.Одним из ярких проявлений русловых процессов является взаимодействие текущей воды и речного русла. Также существуют другие активные руслоформирующие факторы, определяющие русловые процессы (растительность, вечная мерзлота и др.). Действие активных руслоформирующих факторов сдерживают ограничивающие факторы (выходы неразмываемых пород, базис эрозии, коренные борта долины и др.). Русловые процессы приводят к изменениям формы русла. Содержанием русловых процессов является транспорт наносов. Русловые процессы изучает русловедение (теория русловых процессов). Берега долин очень многих рек асимметричны: один берег обыкновенно высокий и крутой, другой - низменный и пологий. Иногда высокими и крутыми бывают в северном полушарии правые берега долин, что наблюдается, например, у Волги, ниже Горького, где река, подмывая и разрушая правый берег своей долины, все дальше и дальше отступает от левого. Так, город Казань, расположенный некогда на Волге, находится в настоящее время в расстоянии около 7 км от ее берега.

20. Речные террасы, их образование и виды.

Речные террасы - формы рельефа в пределах речной долины, образованные деятельностью реки; горизонтальные или слегка наклонные площадки на дне долины, возвышающиеся над поверхностью поймы, ограниченные сверху и снизу уступами. Обычно речные террасы располагаются в несколько ярусов.Речные террасы - в прошлом - поймы реки; река, врезаясь, перестает заливать прежнюю пойму и формирует новую на более низком уровне.Речные террасы могут быть выработаны рекой в породах коренного берега (эрозионные речные террасы). Встречаются террасы смешанного типа (цокольные).Речны́е терра́сы — горизонтальные или слегка наклонённые по течению площадки в долинах рек. Террасы обычно сложены аллювием и находятся на уровне древних пойм.

Как правило, террасы возникают при опускании базиса эрозии и образования рекой нового профиля равновесия: русло опускается, прорезая пойму, которая становится террасой. Изредка террасы возникают при перекосах земной поверхности, вызванных тектоническими движениями, а также вследствие климатических изменений.

В зависимости от геологического строения выделяют следующие террасы: эрозионные (аллювий, слагающий террасу, имеет небольшую мощность); цокольные (аллювия много, и коренные породы обнажаются только в нижней части бортов долины); аккумулятивные (река прорезает только древний аллювий). Террасы бывают продольные, поперечные и коренные.

21. Береговые процессы. Волновые течения и их геоморфологическая роль.

Беспрестанная работа волн приводит к изменению морских берегов. Необходимо зорко следить за тем, чтобы прекрасный пляж, который служит тысячам людей, не был разрушен и унесен морем, не говоря уже о том, что унесенный материал способен совершенно занести мор ской порт. Поэтому надо детально анализировать, куда и как переносится обломочный береговой материал. Волны и течения могут нести его вдоль и поперек берега. Здесь и потоки гальки — «каменные реки», и мельчайшие взвешенные частицы (объект исследования оптиков моря). Перемещение взмученных частиц у южных берегов Балтийского моря изучал с помощью фотоэлектрического прозрачномера немецкий исследователь Г. Люнебург. С этой же целью на подводной лаборатории «Черномор» был установлен прозрачномер, сконструированный в Южном отделении Института океанологии. Потоки мелких иловых частиц нередко имеют внушительные размеры. Такой поток, простирающийся на. 1200 км, известен у берегов южноамериканского континента.Оптика моря весьма успешно помогает океанологии и в таком важном и сложном вопросе, как распознавание вод различного происхождения. Часто такие воды отличаются не только по основным гидрологическим характеристикам— температуре и солености, но и по содержанию взвешенных частиц, а следовательно, по прозрачности. Даже когда прозрачность разнородных вод, переносимых мощными океанскими течениями, одинакова, все же удается разграничить их, используя оптические методы.

Воды открытого океана и внутренних морей весьма рельефно отличаются друг от друга содержанием «желтого вещества», о концентрации которого в море легко судить по измерениям прозрачности в синей или ультрафиолетовой части спектра. Можно было бы привести еще много примеров, когда оптика моря оказывается полезной при океанологических исследованиях.

22. Волны и их роль в формировании берегового рельефа. Волна́ — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. Другими словами, «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины — например, плотности вещества, напряжённости электрического поля, температуры[1]».В связи с этим волновой процесс может иметь самую разную физическую природу: механическую, химическую (реакция Белоусова — Жаботинского, протекающая в автоколебательном режиме каталитического окисления различных восстановителей бромисто-водородной кислотой HBrO3 ), электромагнитную (электромагнитное излучение), гравитационную (гравитационные волны), спиновую (магнон), плотности вероятности (ток вероятности) и т. д.Многообразие волновых процессов приводит к тому, что никаких абсолютных общих свойств волн выделить не удаётся[2]. Одним из часто встречающихся признаков волн считается близкодействие, проявляющееся во взаимосвязи возмущений в соседних точках среды или поля, однако в общем случае может отсутствовать и она[2].Среди всего многообразия волн выделяют некоторые их простейшие типы, которые возникают во многих физических ситуациях из-за математического сходства описывающих их физических законов[2]. Об этих законах говорят в таком случае как о волновых уравнениях. Для непрерывных систем это обычно дифференциальные уравнения в частных производных в фазовом пространстве системы, для сред часто сводимые к уравнениям, связывающим возмущения в соседних точках через пространственные и временные производные этих возмущений[2]. Важным частным случаем волн являются линейные волны, для которых справедлив принцип суперпозиции.По своему характеру волны подразделяются на По признаку распространения в пространстве: стоячие, бегущие. По характеру волны: колебательные, уединённые (солитоны). По типу волн: поперечные, продольные, смешанного типа. По законам, описывающим волновой процесс: линейные, нелинейные. По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях. По геометрии: сферические (пространственные), одномерные (плоские), спиральные. Бегущие волны, как правило, способны удаляться на значительные расстояния от места своего возникновения (по этой причине волны иногда называют «колебанием, оторвавшимся от излучателя» В основном физические волны не переносят материю, но возможен вариант, где происходит волновой перенос именно материи, а не только энергии. Такие волны способны распространяться сквозь абсолютную пустоту. Примером таких волн может служить нестационарное излучение газа в вакуум, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов, волны плотности транспортных потоков.

23. Абразионные берега и их формирование. Абразионный берег - высокий крутой отступающий берег океана, моря, озера, водохранилища, разрушаемый действием прибоя. Основными элементы рельефа абразионного берега являются: абразионный подводный склон (бенч);  береговой уступ (клиф), ограничивающий береговую террасу со стороны суши; олноприбойная ниша; и подводная примкнувшая намывная аккумулятивная терраса. Абра́зия (лат. Abrasio — соскабливание, соскребание) — процесс механического разрушения волнами и течениями коренных пород. Особенно интенсивно абразия проявляется у самого берега под действием прибоя (наката). Горные породы испытывают удар волны, коррозионное разрушение под действием ударов камней и песчинок, растворение и другие воздействия. Менее интенсивно протекает подводная абразия, хотя ее воздействие на дно в морях и озерах распространяется до глубины несколько десятков метров, а в океанах до 100 м. и более.Абразию следует отличать от размыва, разрушающего рыхлые, чаще всего голоценовые отложения. Такое толкование абразии и размыва применяется в океанологии. В общей геологии и геоморфологии обычно под абразией понимают процесс разрушения коренных и рыхлых пород. Своеобразно абразионные процессы протекают на берегах полярных областей, нередко образованных мерзлыми грунтами, содержащими лед.

Под действием волн происходит протаивание мерзлых пород с полным или частичным выносом протаявшего материала. Процесс разрушения волнами таких берегов получил название термоабразии.

24. Аккумулятивные формы морских берегов в зоне прилива и отлива. Обломочный материал в береговой зоне, перемещаемый волнами и прибоем, называется морскими наносами. Скопление наносов в зоне прибойного потока называется пляжем. Обычно пляж сложен более крупными наносами, чем подводной береговой склон. Вблизи зоны разбиения волны накапливается самый крупный обломочный материал, так как максимальные скорости потока достигаются в начале его движения.По морфологическим признакам можно выделить пляжи полного и неполного профиля.Пляж полного профиля образуется, если впереди формирующихся наносов имеется свободное пространство. Тогда пляж приобретает вид берегового вала, который имеет отлогий и широкий морской склон и более крутой склон, обращенный к берегу. Если пляж формируется у подножья уступа, то образуется присклонный пляж или пляж неполного профиля, с одним склоном, обращенным к морю.При поперечном перемещении наносов возникают различные подводные и береговые аккумулятивные формы. Это подводные валы, представляющие собой аккумулятивные формы, сложенные песчаным материалом и протянутые вдоль берега параллельно друг другу. Обычно бывает 2-3 вала, реже 5-6 валов. Высота их от 1 до 4 метров при длине от нескольких сотен метров до нескольких километров.Происхождение подводных валов связывают с частичным разрушением волн или так называемым забуруниванием. При этом валы теряют часть энергии и переносимый ими материал отлагается на дне в виде подводного вала. Зона частичного разрушения волн при неглубоком залегании дна у берега может быть довольно широкой. Ее называют зоной забурунивания.Большое количество подводных валов связано с тем, что волны разной бальности испытывают забурунивание на разных глубинах. Подводные валы образуются в местах подводного склона, где происходит частичное разрушение волн определенной бальности.Пляжи, береговые и подводные валы являются элементарными аккумулятивными формами. К более крупным аккумулятивным образованиям относятся береговые бары или барьеры.Береговые бары сложены материалом донного происхождения, обычно ракушечными и коралловым песком. Они протягиваются на десятки и сотни километров вдоль низменных морских берегов и обычно отделяют от моря прибрежную акваторию, которая называется лагуной. Подножья морских баров располагаются на глубине 10-20 м, а над водой они возвышаются на 5-7 м, иногда до нескольких десятков метров. Такая большая высота достигается за счет дюн. Бары широко распространены и встречаются у 10 % берегов мирового океана. Можно предполагать, что формирование баров связано с повышением уровня океана в послеледниковое время. При этом поверхности затопленных аккумулятивных равнин оказываются слишком отлогими и волны выносят в сторону берега большие массы песка. Излишки перемещаемых наносов выпадают при движении и образуют подводный бар, который становится препятствием для поступающих с подводного берегового склона наносов. Отложение их на морской стороне бара приводит к его разрастанию в ширину. Одновременно бар растет и в высоту за счет набрасывания наносов на гребень и общего перемещения бара на меньшие глубины. Можно считать, что образование береговых или островных баров связано с изменением уровня мирового океана в новейшее время.Продольное перемещение наносов. При подходе волн под косым углом к берегу возникает продольное, или вдольбереговое перемещение наносов. За счет волновых колебаний частицы наносов совершают путь по зигзагообразной траектории и проходят некоторое расстояние вдоль берега. Прибойный поток, взбегая на пляж, в начале сохраняет направление движения волны, затем все больше отклоняется от него под действием силы тяжести. Обратный поток сбегает по направлению наибольшего уклона. Он описывает ассиметричную траекторию, напоминающую параболу, и перемещает частицы наносов вдоль береговой линии. Скорость такого перемещения зависит от величины угла похода волны к берегу. При этом оптимальная величина его составляет 45°. При определенных условиях на пляже и на подводном береговом склоне происходит массовое перемещение наносов. Такое их перемещение в одном направлении за длительный отрезок времени, например за год, называется потоком наносов. Поток характеризуется мощностью, емкостью и насыщенностью.Мощность потока – это количество наносов, которое реально перемещается вдоль берега за год. Емкостью – называется количество наносов, которое волны способны перемещать. Если мощность равна емкости, то это значит, что вся энергия волн затрачивается только на транспорт. Ни размыва берега, ни отложения наносов в этом случае не происходит. Поэтомунасыщенностью потока следует называть отношение мощности к емкости. Если это отношение меньше 1, то поток ненасыщен. При этом часть энергии, свободной от работы по переносу материала, будет направлена на размыв берега. Если емкость потока меньше, чем поступление наносов на данный участок, можно говорить о повышении интенсивности поступления наносов над емкостью потока. В результате часть материала прекращает движение и отлагается, образуя аккумулятивные формы.Аккумулятивные формы при продольном перемещении наносов. При уменьшении угла подхода волн к берегу емкость потока понижается и начинается аккумуляция материала. При этом образуются: аккумулятивные формы заполнения контура берега. К этой категории относятся различные аккумулятивные подводные террасы в вершинах заливов. Аккумулятивные косы, которые образуются при огибании выступа берега потоком. При этом происходит растекание фронта волны и понижение ее энергии. Косы причленяются к берегу только своей корневой частью, а растущее их окончание остается свободным. Поэтому такие косы называют свободными аккумулятивными формами. Если берег со стороны моря защищен мысом, то у входа в залив образуется замыкающая форма, которая называется пересыпь.Берега приливных морей. На морские берега воздействуют не только волнения, но так же приливы, которые нередко играют большую геоморфологическую роль. При этом приливы на глубоких берегах усиливают абразию, так как с увеличением глубины у берега волны белее энергично воздействуют на клиф. Подножье клифа на таких берегах находится на уровне прилива. Во время отлива лишь часть взвешенного материала уносится отливным течением. В результате у берега образуются аккумулятивные формы, которые называются осушками или ваттами. Постепенно поверхность осушки становится выше уровня приливов, на ней поселяется растительность и формируется почвенный покров. Такие поверхности называются маршами.Таким образом, аккумулятивная деятельность приливов в целом приводит к наращиванию суши. В пределах прибрежного мелководья могут формироваться подводные аккумулятивные формы: песчаные гряды и песчаные волны.Песчаные гряды – это крупные линейные формы длиной до нескольких километров и шириной 1-2 км. Их высота составляет до 20 м. расположены они вдоль берега в направлении приливных течений.Песчаные волны – это образования, возникшие на склонах песчаных гряд и ориентированные фронтально по отношению к направлению приливных течений. Размеры их от нескольких сотен метров до нескольких километров в длину и до нескольких метров в высоту. Они напоминают увеличенные знаки волновой ряби.

25. Приливы и отливы. Рельеф берегов в зоне прилива и отлива.Уровень поверхности океанов и морейпериодически, приблизительно два раза втечение суток, изменяется. Эти колебания называются приливами и отливами. Во время прилива уровень океана постепенно повышается и достигает наивысшего положения. При отливе уровень постепенно падает до наинизшего. При приливе вода течет к берегам, при отливе — от берегов.Приливы и отливы — это стоячие волны. Они образуются вследствие влияния таких космических тел, как Луна и Солнце. По законам взаимодействия космических тел наша планета и Луна взаимно притягивают друг друга. Лунное притяжение столь велико, что поверхность океана как бы выгибается ему навстречу. Луна движется вокруг Земли, и за ней «бежит» по океану приливная волна. Дойдет волна до берега — вот и прилив. Пройдет немного времени, вода вслед за Луной отойдет от берега — вот и отлив. По тем же всеобщим космическим законам приливы и отливы образуются и от притяжения Солнца. Однако приливообразующая сила Солнца в связи с его удаленностью значительно меньше лунной, и если бы не было Луны, то приливы на Земле были бы в 2,17 раз меньше. Объяснение приливообразующих сил впервые было дано Ньютоном.Приливы отличаются друг от друга продолжительностью и величиной. Чаще всего в течение суток происходит два прилива и два отлива. На островных дугах и побережьях Восточной Азии и Центральной Америки наблюдается один прилив и один отлив в течение суток.Величина приливов еще более разнообразна, чем их период. Теоретически один лунный прилив равен 0,53 м, солнечный — 0,24 м. Таким образом, самый большой прилив должен иметь высоту 0,77 м. В открытом океане и у островов величина прилива довольно близка к теоретической: на Гавайских островах — 1 м, на острове Святой Елены — 1,1 м; на островах Фиджи — 1,7 м. У материков величина приливов колеблется от 1,5 до 2 м. Во внутренних морях приливы очень незначительны: в Черном — 13 см, в Балтийском — 4,8 см. Средиземное море считается бесприливным, но около Венеции приливы бывают до 1 м. Наиболее крупными можно отметить следующие приливы, зарегистрированные вМировом океане:В Атлантическом океане в заливе Фанди прилив достиг высоты 16-17 м. Это самый большой показатель прилива на всем земном шаре.На севере Охотского моря в Пенжинской губе высота прилива достигла 12-14 м. Это самый большой прилив у берегов России. Однако приведенные выше показатели приливов являются скорее исключением, чем правилом. В преобладающем большинстве пунктов измерений уровня приливов они невелики и редко превышают 2 м.

Значение приливов очень велико для морского судоходства, устройства портов. Каждая приливная волна несет огромный запас энергии.

26. Морские террасы, их формирование. морска́я (озёрная) терра́са элемент древнего рельефа побережий крупных озёр и морей, образованного при ином, более высоком или более низком стоянии воды в море или озере. Различают террасы, поднятые выше уровня водоёма и затопленные, погружённые под воды (их называют также береговыми и донными). Происхождение террас связано с изменением уровня водоёма. Как известно, уровень Мирового океана неоднократно испытывал колебания. Последние особенно значительными были в четвертичное время, когда в ледниковые и межледниковые эпохи уровень вод мог соответственно понижаться на 100–120 м и повышаться более чем на 10 м выше современного. Строение террас позволяет судить об истории их формирования. Низкие, начинающиеся от коренного берега волноприбойной нишей, слегка наклонённые в сторону моря поверхности, сложенные коренными породами, свидетельствуют об абразионном происхождении террасы. Ширина террас может достигать нескольких километров. На их поверхностях могут сохраняться морские или озёрные отложения. В каждой террасе различаются тыловой шов, уступ, поверхность и бровка. Террасы могут быть аккумулятивными и коренными, или абразионными. Выс. террасы определяют по выс. её тылового шва. Затопленные террасы различаются по их батиметрическому положению. Одновысотные террасовые уровни принято считать одновозрастными. Наиболее молодые морские террасы образовались при таянии и отступании покровных ледников Европы и Сев. Америки 18–17 тыс. лет назад, во время т. н. фландрской трансгрессии.